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A time domain simulation model which approximates the

three-dimensional velocity fluctuations of wind turbulence

has been developed. This model is used in a discrete time

control algorithm to regulate the output torque oE a wind

turbine by changing the pitch angle of the turbine blade.

The wind model provides a velocity field which varies

randomly with time and space and gives the proper correla-

tion between spatial locations and velocity components.

In addition, the spectral representations approximate

those observed from a rotating reference frame. The ver-

sion of the model described in this report is a time

domain simulation. It makes use of a random number gener-



ator to construct a white noise time series with a uniform

power spectral density over the frequency range of inter-

est. This noise source is then passed through a set of

appropriate linear filters to obtain the various wind

velocity fluctuations which would be experienced by a

rotating wind turbine blade. The blade pitch angle

remains fixed in the computation of average torque values

for each revolution which does not permit a continuous

control action to be implemented. Therefore, a discrete

control model with a time interval equal to the period of

the rotor revolution is chosen. A control action which

compensates for the flapping oscillation and induces a

torque step response with a small overshoot which reaches

steady state in a minimum number of steps is desirable.

To achieve this, an integral control action is combined

with a digital narrow band rejection filter. The integral

control action eliminates the steady error in the result-

ing torque response.
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DISCRETE-TIME BLADE PITCH CONTROL FOR WIND TURBINE TORQUE
REGULATION WITH DIGITALLY SIMULATED TURBULENCE EXCITATION

INTRODUCTION

The objective of this report is twofold. In the

first part a time domain simulation model which approxi-

mates the three-dimensional velocity fluctuations of wind

turbulence is developed. In the second part a control

algorithm is developed and incorporated into an existing

simulation model of a wind turbine. The torque on the

wind turbine rotating shaft is controlled by changing the

pitch angle of the wind turbine blade. The input distur-

bances to the wind turbine are composed of steady and

turbulence parts. The varying turbulent wind fluctuations

are digitally simulated using the reports of the analysis

in Part I.

The wind model provides a velocity field which varies

randomly with time and space and gives the proper correla-

tion between spatial locations and velocity components.

In addition, the spectral representations approximate

those observed for a rotating reference frame. It makes

use of a random number generator to construct a white

noise series with a uniform power spectral density over

the frequency range of interest. This noise source is

then passed through a set of appropriate linear filters to
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obtain the various wind velocity fluctuations which would

be experienced by a rotating wind turbine blade.

The program is written in Fortran V on the CDC Cyber

170/720 series. It is designed in a block-structured form

so various tasks performed within the program are essen-

tially separate routines and are linked together by an

executive program. Appendices I.C. through I.F include a

complete program listing, a sample input data file, a pro-

cedural example of the interactive features, and results

of the sample run as observed from the tip of a Mod-0A

wind turbine blade.



CHAPTER I.l TURBULENCE MODEL

I.l.l Introduction

Fluctuations in the aerodynamic forces on a wind tur-

bine blade are generated by the relative motions of the

air with respect to the blade. These relative motions are

comprised of two parts: the motions of the blade and the

motions of the air. The motions of the air can further be

divided into the undisturbed turbulent flow and the

"induced flow" due to the presence of the wind turbine

wake. The terms comprising the undisturbed turbulent flow

will be characterized in this chapter. More precisely,

for a horizontal axis wind turbine, the aerodynamic forces

are determined by the instantaneous air velocity distribu-

tion along each of the turbine blades. These blades, in

turn, are rotating through the turbulence field which is

being convected past the turbine rotor disk. It is thus

necessary to characterize the wind turbulence field by a

three-dimensional velocity vector which varies randomly

with time and with the position in space. A complete

statistical description of this turbulent velocity field

requires the determination of all possible joint probabil-

ity distributions between different velocity components at

different times and positions in space. Clearly, such a

description will not be possible without considerable

simplification. The validity of the resulting simplified
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model will depend upon a comparison of the characteristics

predicted by the model and those observed in the atmos-

phere and more importantly, those observed in actual wind

turbine field tests (I). The turbulence model used in

this report is duscussed in detail in reference (2) and is

briefly described in this chapter for clarity.

I.I.2 Model Assumptions and Approximations

The wind turbulence inputs used in the model are

determined in three basic modeling steps. First, the

turbulent velocity field is characterized by a model which

gives the correlations between velocity components at

different spatial points and at different time instants.

Second, the velocity field is approximated in the rotor

disk by a series which varies with time. A correlation

model for these components is derived from the original

field model. Third, simple rational spectral representa-

tions are determined which approximate the derived corre-

lation model. A brief discussion of the assumptions and

approximations used in these steps follows.

The turbulent velocity field is assumed to be sta-

tionary, locally homogeneous, isotropic (3), and satisfy-

ing Taylor's frozen field hypothesis (4). The Von Karman

model (5) is used to characterize the correlations between

velocities of spatially separated points. This model is

widely used in aircraft turbulence response analysis



(6,7). However, due to the anisotropic nature of the

atmospheric boundary layer, the use of the model for wind

turbines can be questioned. Frost (8) has estimated that

the deviation from isotropy is of secondary importance.

However, one should not rely heavily on design calcula-

tions which use this model until more complete experi-

mental verification is available.

Once the correlation model of the turbulence field is

established, the velocity is approximated over the rotor

disk by a series which varies with time. This is done to

simplify the statistical nature of the random field to

that of several stochastic processes.

In order to further simplify the model, the power

spectral densities are approximated by a simple rational

form, and nondimensional parameters are determined which

match the low frequency power spectral density and the

total variance for the computed spectra and the rational

approximation. The rational form chosen corresponds to an

exponentially correlated random process which is particu-

larly easy to handle both analytically and in simula-

tion. The following section describes the resulting model

in more detail.



I.i.3 Series Approximation to the Turbulent Velocity

Field

The longitudinal component of turbulence (normal to

the rotor disk) generally provides the most important

aerodynamic effect on wind turbines (5). In order to

provide an accurate determination of these effects, it is

proposed to approximate the variation of the velocity

across the rotor disk by a series which includes up to

quadratic terms. Using Taylor's frozen field hypothesis

relating the spatial and time dependency, the velocity

across the rotor disk can be written as follows:

Vy(X, -Vwt, z) - Vy o(t) + V (t)z + V (t)x, y,z y,x

1 R 2)÷ Vz,zz(t)(z2-

+Vy (t)C x2 1,xx - _ )+ v (t)zxy,zx

(i.i)

where Vy(X,y,z) is the velocity component depending on the

x,y,z coordinates shown in Figure I.l.l and R is the

radius of the rotor disk. The series of functions:



f0 = 1

7

fl = z

f2 =x

f3 = z

f4 = X

(1.2)

f5 = zx

were found by choosing polynomials with successively

higher powers of x and z and enforcing conditions of

mutual orthogonality over the rotor disk, i.e.,

f fj(x,z)fk(x,z) dA = 0 ; for j # k
(1.3)

Thus, the least-square functional approximation (i.e., the

terms Vy,... which minimize the difference between Vy and

the approximate value) is given using the usual general-

ized Fourier expansion formulas (6):

Vy,o = f (1)Vy dA/f (I)
2

dA

Vy,z = _ z Vy dA/I z2 dA

Vy,x = _ x Vy dA/f x2 dA
(1.4)

Vy,z z = _ CZ 2 - 1 R 2) Vy dA/_ IZ 2 - 1 R2)2 dA

Vy,x x - _ (x 2 - 1 R 2) Vy dA/_ Ix 2 - 1 R 2)2 dA

Vy,z x = f zx Vy dA/] (zx) 2 dA
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Note that the time argument has been dropped for these

equations. It should be understood that these equations

apply at any instant of time. Now, when the statistics of

the terms Vy,z z and Vy,x x are considered it is found that

correlation between the terms exists which complicates the

statistical modeling. To alleviate this problem, linear

combinations of the last three terms are defined so that

the resulting six terms are all mutually uncorrelated.

Thus, we define

1 + Vy )Vy,rr = _ [Vy,zz ,xx

l •

Vy,r s = ½ Vy,zx

(1.5)

Converting to polar coordinates and substituting Eqs.

(1.5) into Eqs. (i.i) and (1.4) gives the following form

for the series

= V + Vy r cos% + V r sin#Vy y,o ,z y,x

+ Vy,rrCr 2 1 R2 2- _ ) + Vy,r c r cos2#

2
r sin2# (1.6)+ Vy,r s

where the six relations:
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R 2_1
Vy,o - _-'i-_ f f

"g.K 0 0

R 2_

_ 4 f f
VY'Z wR 4 o o

R 2_

_ 4 f f
Vy'x _R-_ o o

12 R 2_

_,r_- _ f f
wr o o

6 R 2w
- f f

Vy'rc TR--6 o o

6 R 2w
- f fo

Vy rdrd#

vy(rcos#)rdrd_

Vy (rs in% )rdrd_

1 R 2
VyCr 2 - _ )rdrd_

Vy{_2cos2_)rdrd¢

Vy(r 2 sin2#)rdrd¢

(1.7)

Given a three-dimensional correlation model for the

velocity component Vy, it is then possible to utilize Eqs.

(1.7) to compute the correlation statistics or power spec-

tral densities for the six "indicial" velocity terms:

Vy,o, Vy,z, etc. Before proceeding to do this, however,

we will first consider the convergence properties of the

series.

In general, the convergence of a series based on

orthogonal functions requires that the true function be

square integrable over the domain of interest (7). The

turbulent velocity component, Vy, is a random variable

depending on space and time, so that the usual Riemann

integration does not apply. The theorems of stochastic

integration (8) can be used instead, and the concept of
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convergence of the series can be defined so that the vari-

ance of the difference between the true value and that

given by the truncated series goes to zero as more and

more terms in the series are 'included (9). Since the

variance of this approximation error is positive over the

whole domain, a necessary and sufficient condition for

convergence of the series is that the error variance,

averaged over the domain, goes to zero. This averaged

error variance is then a measure of the convergence pro-

perties of the series. Table I.l.l shows the relative

approximation error for the truncated series defined by

Eq. (1.6).

1

f E[(Vy-  y121dA (18)

where Vy = truncated series representation of Vy

a2 = variance of Vy

A = area of rotor disk.

The relative approximation error is seen to depend on the

dimensionless parameter R/L where R is the disk radius and

L is the turbulence integral scale. The computation was

carried out using the three-dimensional Von Karman corre-

lation function for isotropic turbulence (i0).

Also shown in Table I.l.l are the relative approxima-

tion errors when only the uniform term Vy,o is retained

and when the uniform and shear terms Vy,o, Vy,z, and Vy,x

are retained. These relative approximation errors are
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designated eo and eI , respectively. It can immediately be

seen from the table that the quadratic terms improve the

approximation and that the approximation is relatively

poor when the disk radius approaches the turbulence inte-

gral scale. It must be remembered, however, that the Von

Karman model does not account for the effects of high wave

number viscous dissipation and that the aerodynamic wind

turbine rotor forces are always given by spatial integra-

tions which also provide low-pass wave number filtering.

Thus, it is expected that these aerodynamic forces will be

computed more accurately using the truncated series

approximation than is indicated by the data in

Table I.l.l.

Using uniform and linear gradient terms to approxi-

mate the in-plane velocity components yields six turbu-

lence input terms which vary with time. The complete

turbulence model can then be written in the following

form:

Normal Velocity Components:

VyCX,-vt,z_= Vy,o+ v (z) + v (x)
y,z y,x

2 1 R2
+ --Vy,rr(Z2 + x - -_ )

+ Vy,rc(Z2 - x2) + Vy,rs(2zx) (1.9)



In-Plane Velocity Components:

12

+ + _ X + C + _ ZVz(X'-Vwt'Z) --Vz,o _zx x zx zxz zx

VxlX,-V2t,Z ) = Vx, O - yZX z + {ZX z - ezx x + _zx x

(i.i0)

where the time-dependent linear gradient turbulence param-

eters are given by

1 _ Vx z)_zx = _ CVz,x

- 1
_zx -_ (Vz + Vx z)

,X

ZX 1 _ Vx x)(Vz,z

u

Czx = ½ {Vz + Vx x)
,Z

There are twelve turbulence inputs which define the turbu-

lence model. These twelve terms are described in

Table I.I.2. Drawings of typical fluid streamlines are

shown in Figure I.i.2 for the in-plane gradient terms.

I.i.4 Filtered Noise Model For Turbulence

Each of these twelve terms are modeled as a station-

ary exponentially correlated random process, and they are

assumed to be uncorrelated with each other; although it

can be shown using mass continuity that Vy,o, _zx and

Vy,rr must be correlated. The _zx and Vy,rr terms are

relatively small compared with Vy,o, and are not associ-

ated with large aerodynamic forces allowing this simplica-
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tion without introducing large error. This makes it pos-

_h1_ _ _pres_nt the turbulence inputs in the following

way

dx
_-6 = Ax + Bw (i. Ii)

where x

w

= the vector of system states

= the vector of independent white noise

excitations

A,B = matrices.

The state correlation matrix is defined by

R(z) = E[x(t + _)xT(t)] (1.12)

and is computed from the differential equation (for T • 0)

d---R = AR , R(o) = X (1.13)
dr

where the covariance matrix X (assuming zero mean) is

given by the solution to the Lyapunov equation (ii)

AX + XA T + B Sw BT 0 (1.14)

and Sw is the diagonal matrix of noise power spectral

densities.

Assuming that the turbulence terms Vy,o, Vy,z, etc.

form the state of a system in the form of Eq. (i. Ii), the

correlation matrix R(_) is given by the various cross

correlations among the individual terms. For example,



E[Vy,z(t+T)Vy,z(t)] =

(-_1)2ff_[Xl,-vwCt+e),Zl)VyCX2,-Vwt,Z21]

• ZlZ 2 dA 1 dA 2

where the integration is over two disks of radius R. The

subscripts 1 and 2 refer to coordinates in the two disks,

respectively. Given the correlation matrix R(e), the

matrix A can be computed by integrating Eq. (1.13)

R(-) - R(o) = A f R(T) de

o

or

A = -x[s+]-1

where S+ = f R(e) de
o

x = R(o)

and R(®) = 0.

The B matrix then must satisfy Eq. (1.14) so that

BT - (Ax+ _T)B Sw =

If the noise terms are chosen (for simplicity) to have

identical power spectral densities, then

14

(1.15)

(1.16)

(1.17)

(1.18)

w

where S w is now the scalar PSD of each noise excitation.

A unique matrix B can be determined if it is also required

(1.19)
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to be triangular, the result of which is called the

Chloeskii square root matrix (12).

In cases where R(_) is diagonal, considerable simpli-

fication results. In this case, A and B will both be

diagonal and the resulting scalar equations apply:

Xk
Ak = - __

S+ k

25xk (1.2o 
Bk=4

W

where the subscript indicates the k th diagonal element.

It is convenient to choose the noise power spectral

density

S = --_2L (1.21)

w V 3
W

thereby defining the noise vector to be dimensionless.

Also, dimensionless parameters can be chosen so that

a, --

L Ak

V
W

(1.22)

L Bk

Vw
for uniform terms

RL Bk
b, = for shear terms (1.23)

Vw
R 2 L Bk

for quadratic terms

These parameters only depend on the dimensionless ratio

R/L, where again R is the disk radius and L is the turbu-
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fence integral scale. The previous work (13) gives a

table of values for the a. and b. parameters for the uni-

form and shear values, while the quadratic terms are found

in (14). In summary, then, for a given turbine rotor size

and turbulence scale, the a. and b. parameters are

given. Then using the steady wind speed Vw and the turbu-

lent velocity variance a2, the dimensional parameters

governing the model are then computed.

In order to avoid the inconvenient interpolation

necessary in evaluating the model parameters when R/L is

not a tabulated value, a regression procedure was utilized

to give a formula for calculating the dimensionless param-

eters. For the uniform terms, the following form was

found to describe the data:

where

a. or b, - k 1

R

R. = E "

The parameters kl, etc. were determined as follows:

i. k I is given by the limit as R* ÷ 0, which

.

is either I, 2 or 4_.

Assuming k 3 = 0 and R. is small, Eq.

can be rearranged so that

a. or b. - k I - k 2 R. + k2k 4 R_

(1.24)

(1.24)

(1.25)
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was found to fit the data. In this case,

-k 2

a. or b. = klR . + k 3 + k 4 R. (1.27)

The parameter k 2 was chosen to match the slope of a log-

log plot of a. or b. vs. R.. A value of k 2 = 1 was found

to give good results for a, and k 2 = i/4 for b.. The

remaining parameters, k I, k 3 and k4, were determined by

standard linear regression. Table I.i.4 gives the result-

ing values for both the normal and in-plane components for

the shear terms and for the normal component quadratic

the parameters k 2 and k 4 can be found using

standard linear regression using the data

for small R,.

3. The equation is then rearranged into the

form

k4R,

a, or b. = k I + cI 1 + k4R , + c2R (1.26)

and the parameters cI and c2 are again

determined using standard linear regression

with k I and k 4 fixed. These values then

give the final values of k 2 and k 3 param-

eters.

Table I.i.3 shows the resulting regression parameters for

the uniform turbulence terms including the in-plane veloc-

ity components described in the previous work (14).

For the shear and quadratic terms a different form
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terms. Again the data for the in-plane terms were taken

from reference (15). In all cases the maximum deviation

of the data from the regression curves was less than 5%.

The model describing the turbulent velocity fluctua-

tions can be summarized in polar coordinates in the fol-

lowing manner

Normal Velocity

v (r,t,#) = V + V (rsin_) + V (rcos#)
y y,o y,x y,z

r2 R2/_) + Vy,rcCr 2+ Vy,rr[ - cos2#l

÷ Vy,rsCr2si,2_)
(1.28)

In-Plane Velocities

Vx(r,t,_) = Vx, O

Vz(r,t,_)

÷ ([_zx - 'zx) rcos_,

+ {¢ZX - ¢ZX ] rsin#

= Vz,o + {TZX + _ZX_ rsin#

+ (_zx + _zx] rcos_

(1.29)

where from Figure I.l.1, z = rcos_ and x = rsin#.

Each of the turbulence terms (Vy,o, Vx,o,''', Vy,rs)

is given by an equation of the form

d Vy, = bw (1.30)d-_[ •] ÷ a Vy,.



where a and b are defined by

V
w

a = L a.

19

(1.31)

b

CVw21L)b.

CV21RL) b.

CVw21R2L)b,

for uniform terms

for shear terms

for quadratic terms

(1.32)

where a, and b, are given by the regression Eqs. (1.24) or

(1.26) and depend on the ratio R/L. The white noise term

w for each of the twelve turbulence terms is an independ-

ent noise source with PSD = 2_ . A computer program
"w

which calculates the values of a and b in Eqs. (1.30) is

given as the subroutine ATMOS in Appendix I.C.



Table I.l.l. Relative Approximation Error for Series
Approximation.

R/L ¢0 ¢i ¢2

.01 .044 .026 .020

.054 .135 .081 .060

.i .201 .121 .091

.3 .397 .250 .189

.5 .527 .348 .264

1.0 .724 .527 .411

2.0 .889 °737 .608

2O



Table I.i.2.

21

Description of Turbulence Input Terms.

Vx,o

Vywo

Vzwo

Vy,x

Vy,z

7zx

_zx

Czx

_zx

Vy,rr

Vyerc

Vywrs

uniform lateral or side component (in

plane)

uniform longitudinal component along mean
wind

uniform vertical component (in plane)

lateral gradient of longitudinal velocity

vertical gradient of longitudinal

velocity

swirl about mean wind axis (in plane)

shear strain rates (in plane)

dilation (in plane)

symmetric quadratic variation

quadratic with cos2# azmuthial variation

quadratic with sin2_ azmuthial variation



Table I.I.3. Regression Parameters for Uniform
Turbulence Terms.

22

k I k 2 k 3 k 4

Vz & V x

2.0 2.894 -.1383 2.049

2.0 3.290 +.0270 2.054

vy

1.0 1.713 -.0790 2.048

V_/_-_ 2.713 +.01591 2.051



Table I.i.4. Regression Parameters for Shear and
Quadratic Turbulence Terms.

23

k 4

kI k 2 k 3

Vy,z & Vy,x

a, .3266 1.0 .5953

b, .2811 .25 .6450

"(ZX

.4343 1.0 .9170

.2579 .25 .6467

-.1532

-.1093

_zx & Czx

a* .5342 1.0 1.276

b, .1167 .25 .7733

-2.147

-.1284

_ZX

a. 1.654 1.0 1.069

b. .3546 .25 .3951

+2.154

+.2593

Vy,rr

a, 1.091 1.0 .0276

b, .5508 .25 .6473

+.0686

-.1365

Vy,r c & Vy,rs

a, 1.081 1.0 .0279

b, .3897 .25 .4567

+.0685

-.0948
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X

Figure I.l.l. Rotor disk coordinate system.
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_xz Z

X

Z

xV
Z

Figure I.i.2. Streamlines for in-plane velocity
gradient terms.
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CHAPTER1.2 NUMERICAL SIMULATION

1.2.1 Introduction

The objective of this chapter is to outline the

development for the digital simulation of the turbulence

velocity terms. It consists of two parts. First, genera-

tion of uniformly distributed random numbers using the

multiplicative congruential method to approximate a white-

noise time series. Second, generation of the turbulence

velocity terms by filtering the white-noise time series to

obtain the required shape of the spectral density to pro-

duce the appropriate statistics for velocity fluctuations.

1.2.2 Generation of Uniformly Distributed Random Numbers

There are a number of techniques for generating ran-

dom variables by digital computers for simulation pur-

poses. Most of these are reproducible and therefore the

same sequence of numbers will be generated over and over

again given the same starting input. It may be argued

that such repeatable random numbers are, in the true sta-

tistical sense, deterministic, and not random. Since the

digital computer consists of a finite, though large, num-

ber of states, the use of an algorithm for the generation

of random variables also implies that eventually the com-

puter must return to a state that had existed at the time

of some previous implementation of the algorithm which

starts the repetition cycle. However, as long as several
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conditions are met random numbers generated by an algo-

rithm on digital computers can be used for simulation

problems. Numbers that are generated by means of a stored

algorithm are accordingly referred to as pseudorandom.

Four criteria are usually employed to evaluate the

suitability of random number generation method:

I. length of the sequence of the generated

random variates,

2. uniformity of amplitude-density spectrum,

3. small degree of autocorrelation, and

4. speed of computer execution.

The first criterion simply means that the period of

repetition should be much larger than the intended simula-

tion period. The second implies that a uniform probabil-

ity density is to be obtained and the degree of the true

uniformity is to be a measure of quality. The third con-

dition, if met perfectly, would mean that zero correlation

would result, corresponding to true white noise. This is

never the case and a reasonably small degree of correla-

tion (and consequent deviation of the power-spectral den-

sity from a flat spectrum of white-noise) should be con-

sidered allowable.

However, the best criterion is the applicability of

the method used to the problem at hand. Methods that are

very satisfactory for some applications are found unsuit-

able when applied to others. With these considerations in
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mind , the method to be suggested here is the one known

either as the multiplicative congruential technique, or as

the power residue method. It selects as the k th pseudo-

random number the remainder of the division of the product

of a constant integer c, and the (k-l) st pseudorandom

number by some second constant m. Denoting xk the k th

variate so generated, the operation is described mathemat-

ically as follows:

xk = CXk_ 1 (mod m) (2.1)

where the relation "x (mod m)" denotes the selection of

the remainder from the division of x by m. This technique

is ideally suited for implementation on a digital com-

puter.

In practice it is recommended that the starting seed

value, Xo, be some odd number less than m. For a binary

computer, one selects m = 2b where b is the number of bits

per word. The value of the constant c should be of the

order m and in the form

c = 8k • 3 for any integer k ) 0

Thus providing a maximum period of 2 (b-2) pseudorandom

numbers, each between zero and 2b (1,2). Dividing the

generated variates by m gives the numbers between zero and

one. This scheme is used in subroutine RANDOM of

Appendix I.C to generate a sequence of uniformly
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1.2.3 Construction of a White-Noise Time Series

By definition a set of uniformly distributed random

numbers with a range of 0 to m will have a probability

density function given by

probability
density function

1-- 0 < x <m
m

f(x) = (2.2)

0 otherwise

The mean value and variance of the random variates may be

computed from its probability density function, Eq. (2.2),

as follows

_x = E[X] = f x f(x) dx = m2
Q_

2
2 - - 2 m

o = EtX 2j - [S[X]] =
x

(2.3)

A random time series can be constructed using this

set of uniformly distributed random numbers. First, sub-

tract the mean value from each of the variates to obtain a

m m
zero mean process, with all values between - _ and _ •

Construct the time series, x(t), by assuming that each of

the variates, x i occurs at intervals At apart, and that

the value of x(t) is a constant for the period At. This
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produces a random time series x(t), which is a piecewise

continuous function of time as illustrated in

Figure 1.2.1. If each number generated, x i, is statisti-

cally independent and therefore uncorrelated with other

numbers in the sequence, then the autocorrelation function

of x(t) can be determined as

R (T) = E [x(t)x(t+2)]
x

At

= [
o

x(t)x(t + _)f(t)dt

2 (i hi _2.4_R (_) = _
x x At )

This autocorrelation function is plotted in

Figure 1.2.2. Inevitable imperfections in the white-noise

properties of the random number generation process are

evident by the presence of some degrees of correlation for

I'I < At.

The corresponding power-spectral density of x(t) may

be obtained using the above autocorrelation function as

e -i_T dr
Sx(_) [ RX(T)

2 1 - cos_At.

-_, _tC .... _._ j _2.s_
x { (_A t)

which is also plotted in Figure 1.2.2. If the interval,

At is sufficiently small (i.e., _At << I), relationship

(2.5) becomes approximately
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m2At (_At) 2

Sx(_) = 12 [I 12 ] (2.6)

Note that if At is selected small enough, with respect to

the range of frequencies involved in the simulation prob-

lem, it may be considered that the process takes place on

the flat part of the spectral curve near _ = 0 (3). For

this situation the signal is approximately white-noise

with a constant spectral density of

m2At (2.7)
Sx(_) = 12

1.2.4 Filter Model

It was shown in Chapter 1 that each of the twelve

turbulence terms in the turbulence model can be approxi-

Eachmated by an uncorrelated stationary random process.

term was given by an equation of the form

6 + au = bw

where u = instantaneous value of one of the turbu

lence terms, Vy,o, Vx,o, ..., Vy,rs

w = nondimensional zero mean white-noise with

2L
power spectral density Sw = vg__

"w

2 turbulent velocity component variance=

(2.8)

L = turbulence integral scale

Vw = mean wind speed

R = rotor disk radius.

a and b are given by Eqs. (1.31) and (1.32). The desired

power spectral density of the turbulence velocity term is



Su(_) - IG(J_)I 2 Sw -- _2Sw 2

a +

where G(s) is the transfer function between the input
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(2.9)

white-noise, w and output turbulence velocity specified by

Eq. (2.8).

To generate a turbulence velocity term digitally let

us consider samples of the white-noise forcing function at

discrete times tO , tI, ..., tk. Following the procedure

outlined in (4), the solution to Eq. (2.8) at time tk+ 1

tk+l

f
tk

b_Ctk+l,T ) w(T) dT

may be written as

u(tk+l)=  (tk+I, tk)u(tk)+

and in an abbreviated form

Uk+l = _kUk + Wk (2.10)

#k is the state transition matrix for the step tk to

tk+ I, and Wk is the driven response at tk+ 1 due to the

presence of the white-noise input during the (t k, tk+ I)

interval. Note that the white-noise input required in the

continuous model automatically assures that Wk will be an

uncorrelated white-noise sequence in the discrete model

(4).

From Eq. (2.8) the transition matrix is easily deter-

mined as

-aat
%k = e (2.11)
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The variance of Wk is established by using the convolution

integral as

At At
2_ _ E[_2] _ f f g(u)g(v)Rf(u-v) dudv (2.12)
w o o

where g[.] = unit impulse response

g(t) __ E 1 [G(s)] = be -at (2.i3)

and Rf[.] = autocorrelation function of the input white-

noise. The autocorrelation function of the input white-

noise can be established as

Rf[u-v] - E[w(u)w(v)] = Sw_(U-V) (2.14)

where Sw is the power spectral density of the input.

Substituting Eqs. (2.13) and (2.14) in Eq. (2.12) and

carrying out the integration, the variance of Wk becomes

2 2] b2Sw e-2aAt 1
a_ = E[w - 2a (i - (2 15)
w

If the generated random signal x(t) with zero mean and

m 2
variance a_ = I-_ is used to approximate w(k) at the time

intervals t l, t2, ...t k, and if

w(k) = cx(k) (2.16)

then the mean square of both sides is



E[_ 2] - c 2 E[x 2]
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2 2 2
_ = C _X
W

2
m

Substitute for _ = -[--_ and solving for c gives

c = {

6b 2 S

w (i - e-2aAt)} I/2
2

am

(2.17)

Substituting Eq. (2.17) in Eq. (2.16) and using the result

and Eq. (2.11) in Eq. (2.10), gives the turbulence veloc-

ity term at tk+ 1 as

= e_aA t 6b2Sw e-2aAt 1/2
Uk+1 Uk + { 2 (I-)} xk

am

(2.18)

If the range of the random numbers, m, is 1 then Eq.

(2.18) can be written as

6b2S

-aAt w (I - e-2aAt) I/2 x k (2.19)
Uk+ 1 = e Uk + { a

Evaluating the variance of the generic turbulence term

from Eq. (2.9) gives

2 u2 1
= E[ (t)] = R (T=0) = -- j"

u u 2_ Su(W)dw

2 b2Sw

_U = 2a

Taking the mean square of both sides of Eq. (2.19) gives

an identical result.
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x(t)

x 0

_t

x 2

x4

x3

x6

Figure 1.2.1. Time series constructed from a sequence

of uniformly distributed random numbers.
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O,,X2 --m 2 ,..,..__.

--L_T _T

(a)

Sx (m)

-417 --2rr
LIT L_T

(b)

Figure 1.2.2. (a) Autocorrelation function, and

(b) Spectral density function for
the constructed time series.
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CHAPTER 1.3 DIGITAL COMPUTER IMPLEMENTATION

1.3.1 Introduction

In this chapter the computer code for digital simula-

tion of turbulence velocity components is discussed. The

program is written in Fortran V on the CDC Cyber 170/720

series. It is designed in a block-structured form so the

various tasks performed within the program are essentially

separate routines and are linked together by an executive

main program. It is run interactively but can be run in a

batch mode with some prior preparation of response data.

1.3.2 Input Data

A list of the input variables is given in

Table 1.3.1. The user has the opportunity to change any

of the input variables listed in Table 1.3.1 at execution

time. When a run is completed the program allows the user

to either end execution with the current data set, recycle

the current data file with different values for the input

variables, or employ a new data file.

1.3.3 Computer Algorithm for Turbulence Simulation

It was shown in Chapter i, Eqs. (1.28) and (1.29),

that turbulence velocity components can be given in polar

coordinates in the following form:



Normal Velocity
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v (r,#,t) = V
y y,o

+ V (rsin_) + V (rcos_)
y,x y,z

R 2

+ Vy,r r (r2 - _/--) + Vy,r O (r2cos2#)

+ V (r2sin2#)
yors

(1.28)

In-Plane Velocities

Vx (r,#,t)

v z (r,#,t)

= Vx,o + (_zx - 7zx) rcos# + (_zx - Czx) rsin_

(1.29)

= Vz,o + (_zx + 7zx) rsin% + (_zx + Czx ) rcos_

where each turbulence term (Vy,o , Vx,o, ..., Vy,r s) is

given by an equation of the form

d Vy ] + aVy = bw,. ,.

with a and b given by Eqs. (1.31) or (1.32).

The simulation routine SIMULX generates the appro-

priate a and b coefficients based on the given input data

and the curve fitting contained in subroutine ATMOS. The

procedure for obtaining these coefficients is described in

Section i, and the regression method is described in

Appendix I.A. Next, the subroutine TURBS actually simu-

lates the velocity fluctuations by first calling RANDOM to



42

generate a white noise time signal as discussed in

Section 2.3. This signal is then filtered using

Eq. (2.16) to obtain the twelve turbulence parameters of

Table I.i.2, Vx, O, Vy,o, V z,O, Vy,k, etc. The values of

these twelve turbulence parameters are then substituted

into Eqs. (1.28) and (1.29) to obtain the resulting

velocity fluctuations, v x, Vy, and Vz' at any desired

radial station for the current time. As the procedure

marches forward in time, the blade moves to a new azimuth

angle and subroutine TURBS is called again to repeat the

procedure. A flow chart of this process is shown in

Figure 1.3.1 for the executive program SIMULX, and Figure

1.3.2 shows the flow chart for subroutine TURBS.

The number of points along the blade at which turbu-

lence velocity is evaluated is given as the parameter,

NPTS, in the program SIMULX, and can be easily changed.

The turbulence velocity components then are computed at

equally spaced points along the blade from an initial

radius to a final radius which the user specifies. For

the results presented here, only one radial position at

the tip was considered (NPTS = i). As much as possible,

the code has been written to contain its own documentation

through extensive use of comments within the program.

Appendices C through F include a complete program

listing, a sample input data file, a procedural example of

the interactive features, and the results of the sample
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blade.

43

1.3.4 Tool Kit for Signal Analysis

Analysis of random signals requires some basic mathe-

matical tools. There are two general methods of describ-

ing random signals mathematically. The first, and more

basic, is a probabilistic description in which the random

quantity is characterized by a probability model. How-

ever, it tells very little about how the random signal

varies with time, or how the amplitude varies as a func-

tion of frequency.

For this work dealing with atmospheric turbulence it

is helpful to use some of the typical statistical measures

to charactrize the wind signal using the mean, variance,

correlation function, and spectral density. These mea-

sures allow the signal which is being simulated to be

compared with various theoretical models and with experi-

mental data. This is essential because when comparing

wind turbine responses generated using a simulated wind

with responses obtained from field test measurements the

comparison must be made for the "same" atmospheric condi-

tions. This means that the mean, variance, and spectral

density for the simulated wind should match those of the

real atmosphere during the field test period. The tools
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for computing these statistical parameters are discussed

in this section.

Subroutine MEANVAR estimates mean and variance of a

time series. Since each of the turbulence velocity com-

ponents is computed by low pass filtering of a uniformly

distributed white noise time series, it is expected that

the resulting turbulent velocity fluctuations will have

nearly a Gaussian distribution (i). To estimate the

actual distribution subroutine ROB constructs a frequency

histogram which can be compared with the standard normal

distribution.

Subroutine PSD generates spectral density estimates

of the generated velocity signals. It uses a fast Fourier

transform (FFT) algorithm to calculate discrete Fourier

transforms (DFT) (2). A cosine tapered data window is

used to smooth the data at each end of the record before

it is analyzed (which has the effect of sharpening the

spectralwindow). In order to improve the accuracy of the

results, the signal is broken into a number of segments

and the spectral estimates for each segment are computed

and then averaged for all segments at each frequency. A

more detailed discussion of the digital signal analysis is

given in Appendix I.B.

In order to obtain accurate estimates of the spectral

density, relatively long sequences of random velocities

are needed. The length of each of the time series seg-
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ments in the code is set by the parameter LSPECT, which

has been arbitrarily set equal to 128 in a parameter

statement. It can easily be changed but must always equal

an integer power of 2 for the FFT algorithm to work pro-

perly. The user specifies the number of random velocities

generated as the input parameter, NRVELOC. The user can

choose any size up to 6500, the dimension size of the

array. Note that if NRVELOC is not evenly divisible by

the segment length, LSPECT, then an appropriate number of

zeros will be added to each time series. This might make

the length of the time series exceed the declared array

size for the velocity components. To avoid this, NRVELOC

should be kept smaller than the velocity time series array

size minus LSPCT, (currently NRVELOC _ 6500 -128).

Because of larger array sizes it might not be feasible to

run this program interactively on some computers. There-

fore, modification may be required depending on the needs

and resources available to the user.
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CONST

DELTAT

DIVIDER

SEED

NRVELOC

OMEGA

OMEGAZ

ROTR

RRATIO

TI

TL

VRANGE

constant coefficient in the power residue

algorithm (subroutine RANDOM) for generation

of uniformly distributed random numbers

time step interval for generation of random

velocity components (sec)

module used in function (mod) (.) in the

power residue algorithm (subroutine RANDOM)

initial random number used in the power

residue algorithm (subroutine RANDOM)

number of elements of random turbulence

velocity component sequences

rotor speed (rpm)

initial angular orientation in the rotor

disk plane (deg)

rotor radius (feet)

ratio of radial position to blade radius

turbulence intensity (_ in percent)
w

turbulence integral scale (feet)

number of standard deviations displayed for

the turbulent velocity probability density

function (usually selected to be 3)

Vw mean wind velocity (mph)
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PROGRAM SIMULX

C START

t

I
Generate Atmospheric Coefficients

CALL ATMOS

t
Loop. 1 .- NRUELOC

I

Calculate Mean and Variance [

Calculate Spectral Density

Figure 1.3.1. Flow chart of the program SIMULX.
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SUBROUTINE TURBS

CST T)
I

Construct Filter ParametersLoop: I, NWCOMP
i i

Construct Turbulence Velocity_

Terms Vy,O, Vx,O, ...

by the Corresponding Filters

LOOP: 1 NWCOMP

_ Compute Turbulence Ve!ocity Components,

vx, vy, vz, at Different Radial Positions _._

or Current Azimuth.Angle and Time Interval/ I

LOOP. i, NPTS

Figure 1.3.2. Flow chart of subroutine TURBS.



1.3.5 References
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CHAPTERI. 4 SIMULATION RESULTS

5O

1.4.1 Introduction

This chapter presents some typical results obtained

using the computer code to simulate the turbulence inputs

for wind turbines. Simulation results are presented for

two wind turbine sizes. The first turbulence simulation

is for the Mod-0A, 200 kW wind turbine, which has a rotor

diameter of 125 ft. The spectral density of the simulated

turbulence is compared with field test data taken from the

vertical plane array experiments of George and Connell

(i), for similar wind conditions. In addition, the

results are compared with the theoretical Von Karman spec-

tra for the atmospheric boundary layer. The second simu-

lation is for a Mod-2, 300-ft diameter wind turbine. In

this case, there is no appropriate test data which can be

used for comparison, but a comparison is made with the Von

Karman spectrum for the longitudinal velocity component.

1.4.2 Comparison of Simulations

Figure 4.1 I.shows the simulation time series of the

longitudinal velocity component, Vy, as observed from the

tip of a rotating Mod-0A blade. In this simulation, the

tip radius was taken as 62.5 ft and the rotor speed was

40 rpm. In addition, the parameters used for the turbu-

lence simulation where Vw = 26.25 ft/s, u/V w = 0.i0 and

the turbulence integral scale, L, was 400 ft. In
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Figure 1.4.1, the mean wind speed has been removed.

W!9_]re T,4.2 presents the spectral density for the time

series shown in Figure 1.4.1. The simulated spectrum

clearly shows the spikes at 1 and 2 cycles per rotor revo-

lution that are the result of rotation of the blade

through the wind turbulence field. However, the simula-

tion results show no spikes higher than 2 cycles per revo-

lution because the model only allowed for velocity fluctu-

ation harmonics up to sin2¥ and cos2¥ as indicated by

Eq. (1.28). The data taken from the vertical plane array

is plotted showing harmonics up to 3 cycles per rotor

revolution, but higher harmonics are present in the origi-

nal presentation by George and Connell (I). The simula-

tion results show considerably greater spectral energy in

the frequency range of .I to .3 hz than the VPA results.

This is probably because the a* an b* coefficients used to

generate the simulation were selected so that the Von

Karman spectrum would be approximated in the low frequency

range. As is shown in the figure, the comparison with the

Von Karman spectrum in this frequency range is quite

good. It would be possible to more closely approximate

the vertical plane array data by adjusting the a* and b*

coefficients for the Vy,o term of Eq. (1.28). In addi-

tion, it would be possible to add additional harmonics to

the model in order to obtain the 3 and 4 cycles per revo-

lution spectral spikes, but that would involve a signifi-
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cant effort. It is hoped that some experience with the

implementation of the existing model in a dynamics code

could be obtained, before attempting to improve the simu-

lation_ and account for these additional effects.

Figure 1.4.3 shows the probability density function

for the time series of the Vy turbulent velocity fluctua-

tions. As can be seen from the figure, the simulated

velocity fluctuations closely approximate a Gaussian dis-

tribution.

Figure 1.4.4 is a spectral density plot for the ver-

tical velocity component, Vz, as provided by the simula-

tion. The Von Karman spectrum for this turbulence compo-

nent is also provided for comparison. The simulation is

for the case where the turbulence is observed from the tip

of a rotating Mod-0A blade. Whereas the Von Karman spec-

trum plotted is for a point fixed in space. The simulated

spectrum shows a single spike at a frequency of 1 cycle

per rotor revolution. Theoretically there should be many

of these spikes each at a multiple of the rotor blade

passage frequency. However, the simplified simulation

model, Eq. (1.29), for the in-plane velocity components

includes only the first harmonic. No field data is avail-

able for comparison of the in-plane velocity components.

The simulation spectrum for the lateral velocity component

was virtually identical to the results for the vertical

component and therefore has not been presented.
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Figure 1.4.5 shows the probability density function for

the time series of the V z velocity fluctuations, and the

figure shows the distribution to be approximately

Gaussian.

Figure 1.4.6 is the spectral density plot of the

longtidinual velocity component, Vy, for a simulation run

for a Mod-2 sized turbine. In this simulation, the mean

wind speed was Vw = 32.15 ft/s, _/Vw = .061 and the turbu-

lence integral scale was taken as 500 ft. The velocity

field was simulated at two radial locations along the

rotor blade. One was at 30% span and the other was for

the 70% span location. This illustrates one of the con-

venient features of this turbulence model. At each time

step, the velocity fluctuations at all radial locations

are obtained simultaneously, as can be seen by the form of

Eq. (1.28). Figure 1.4.6 includes the Von Karman spectrum

for comparison. Figure 1.4.7 shows a probability density

plot for the velocity fluctuations at 70% span. Unfortu-

nately, there is no appropriate test data with which to

compare these simulation results a the Mod-2 sized

turbine.
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1.4.3 Concluding Remarks

The authors offer the following conclusions and

remarks on the basis of the work presented in this report:

i. The results presented here show that the

turbulence simulation model does a reason-

able job of representing many of the fea-

tures of atmospheric turbulence.

2. The turbulence simulation model presented

here does not model the spectral spikes in

the wind input above 2 cycles per rotor

revolution. If these spectral spikes at

higher harmonics turn out to be important

for cyclic load prediction then this model

will be incomplete. It should be noted

that this model does contain some spectral

energy at the higher harmonics of rotor

speed; it is the effect of rotating through

the turbulence structure that is missing at

the higher frequencies.

3. The great advantage of this model is its

simple structure and fast computation

speed. This simulation model will not

significantly increase the complexity of a

wind turbine dynamic model.

The authors hope that in the near future, this model will

be used to generate inputs for a structural dynamic model,
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so that its usefulness in predicting cyclic loads can be

assessed. Ability to predict cyclic loads reasonably well

for a small computational cost is the ultimate goal, and

this simulation approach seems to offer promise of achiev-

ing that goal.
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Wind Turbine Response, Pacific Northwest Laboratory

Report PNL-5238, September 1984.
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II.l.l Description of the Turbine Model

The turbine model and the computer code used in this

work were originally developed in a previous project (i)

at Oregon State University. The model is for the single-

degree-of-freedom flapping response of an individual wind

turbine blade. It accounts for the blade bending deforma-

tion about the smallest blade inertia axis. The rotor is

assumed to rotate at a constant speed, and the hub is

allowed to move in a prescribed yawing motion. Rotors

that are tilted and yawed relative to the mean wind direc-

tion can be accommodated in a straightforward manner.

The model and the computer code are designed to oper-

ate with aerodynamic models of varying sophistication.

The model includes the effects due to the mean wind, wind

shear, tower shadow, and turbulent fluctuations.

Figure II.l.l shows the orientation of the turbine

blade under analysis with all the intermediate coordinates

required to represent the blade motion. The capital X,Y,Z

coordinates are the fixed reference system. The mean wind

velocity at the hub, Vhu b, and its fluctuating components,

6V X, 6Vy, and 6V z are given in this system. The rotor

spin axis is allowed to tilt through a fixed angle X and

also to have a prescribed time-dependent yawing motion

given as _(t), where # is the yaw angle. The yaw axis is
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coincident with the Z coordinate axis. The hub, located

rigid and to have some radius h. The flexible portion of

the blade begins at the outer hub radius, h. The airfoil

shape may begin at h or at some position further out along

the blade z axis. The blade is coned at some angle 8o as

shown in the figure.

The x,y,z coordinates are located in the surface of

revolution that a rigid blade would trace in space, with

the y axis normal to this surface. The Xp,yp,Zp are the

blade principal bending coordinates, where the zp axis is

coincident with the elastic axis of the undeformed blade.

Bending takes place about the Xp coordinate. It is fur-

ther assumed that the bladeprincipal axes of area inertia

do not change along the Zp axis. The influence of blade

twist on bending displacement is neglected. The orienta-

tion used to set the angle 8p for computations is the

principal axis near the blade tip, because the deformation

is largest there. The final coordinate system is the

n,_,_ system which is on the principal axes of the

deformed blade at some point along the elastic axis.

The rotor blade flapping motion is represented by a

set of coordinate shape functions that are in the form of

simple polynomials. Four functions are included in the

computer code, but any number of the functions can be

used, from only one up to a maximum of four. At present,
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only cantilever blade attachment conditions have been

implemented in the code. Thus, for the results presented

in this report, the flapping motion is represented with

only one coordinate function (i.e., one flap degree of

freedom).

Application of the laws of Newtonian mechanics allows

the development of the equations of motion for the rotor

blade. Reference (I) presents the details of this devel-

opment and further outlines a solution procedure called

"Galerkin's method," which reduces the flap motion equa-

tions to a set of ordinary differential equations in terms

of the blade tip modal displacement, sk.

The model operates in the time domain, and the blade

acceleration equation is integrated via a modified Euler

trapezoidal predictor-corrector method. Results of the

blade loads analysis are printed in tabulated forms for

equidistant points along the blade length and equidistant

azimuths around the rotor disk. They include the blade

deflection, slope, and velocity, the flapwise shear and

moment, edgewise shear and moment, and blade tension and

structural torque at the root of the blade.
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II.l.2 Reference
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II.2.1 Introduction

The objective of the control model is to regulate the

output torque by changing the pitch angle of the wind

turbine blade. The blade pitch angle remains fixed in the

computation of average torque values for each revolution

which does not permit a continuous control action to be

implemented. Therefore, a discrete control model with a

time interval equal to the period of one rotor revolution

is chosen. The control is only active after each revolu-

tion and is, therefore, relatively slow. Thus, a torque

step response with a small overshoot which reaches steady

state in a minimum number of steps is desirable. A con-

trol action which compensates for the flapping oscillation

is also required. To achieve this goal, an integral con-

trol action is combined with a digital narrow band rejec-

tion filter. The integral control action eliminates the

steady error in the resulting torque response.

II.2.2 Development of the Transfer Function

For control purposes, the blade is modeled with one

degree of freedom in the flap direction and its equation

of motion is a nonlinear second order differential equa-

tion. The transfer function between the input blade pitch

angle and the output torque is approximated by a general
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second-order linear model. The blade torque response to a

step change in the blade pitch angle in the absence of

other inputs (gravity, turbulence, wind shear) is obtained

using the simulation program and is compared with the

approximate torque step response using the linear model.

The parameters of the approximate response are adjusted so

that it closely fits the blade torque response. Having

determined the parameters of the approximated torque

response, the transfer function between input pitch angle

and outpu£ torque is determined for small perturbations

from a nominal condition. The present analysis was done

for a rotor speed of 72 RPM, wind speed of 18.5 mph, and

blade pitch angle of 3 degrees. This nominal condition

corresponds to a power of 9.72 kW for the three-bladed

rotor. Figure II.2.1 shows the power curve for the tur-

bine. The nominal point is at the beginning of power

regulation. The turbine torque step response was obtained

for step input changes of 0.5 and -0.5 degrees in nominal

blade pitch angle. The response for each case showed

similar frequency and damping but the magnitudes of their

amplitude and phase were different. Figure II.2.2 shows

the turbine and approximated torque step response for each

case. The parameters of the estimated torque response for

both cases were then averaged and an average estimated

turbine transfer function was obtained as



T(S)
blS + b2

= TQo + s 2 + 2_,.,ns + 2_n

= TQo +
blS + b 2

((s + ad ±im d))
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((.))

where

TQ O =

b 1

b 2

mn

ad

"d

-1.311

= 75.854

= -3741.164

= .0393

= 25.869

= _n = 1.017

= _n 41 - 2 = 25.849

ft-lb/deg

ft-lb/deg.sec

ft-lb/deg.sec 2

rad/sec

rad/sec

rad/sec

and the notation ((.)) denotes the product of two complex

conjugate terms.

II.2.3 Development of the Controller

Figure II.2.3a shows the block diagram of the turbine

and control model. The system consists of the wind fur-

The transfer function ofbine and the averaging process.

the wind turbine is given as

blS + b 2

Tt(s) = TQo + ((s + ad ± j_d ))
((.))

The transfer function for the averaging process is de-

veloped in Appendix II.A and is
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12
To(S) - 2

T2s + 6Ts + 12

where T is the period of one rotor revolution and it

equals 5/16 sec. The turbine has a frequency bandwidth

with limiting frequency corresponding to _d = 1.1017

rad/sec and damped frequency of _d = 25.849 rad/sec com-

pared to ad = T = 3.6 rad/sec and _d = 4 = 2.078 rad/sec

for the averaging process. The averaging process thus has

a higher frequency bandwidth (smaller time constant) and,

therefore, will not be considered in the development of

the control model.

The control is only active after each revolution and

is, therefore, relatively slow. Thus, a torque step

response with a small overshoot which reaches steady state

in a minimum number of steps is desirable. To achieve

this, a proportional feedback for fast response and an

integral action to eliminate the steady state error are

first tried.

The blade pitch angle remains fixed in the evaluation

of average torque values for each revolution. Therefore,

the control model is developed in the discrete time domain

with a time interval equal to the period of one rotor

revolution. Figure II.2.3b shows the system block diagram

with a zero order hold and a sampler to perform the

digital/analog conversion of the input and output signals

to the turbine, respectively (i).
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The method of root locus is used to design the con-

trol algorithm. The gain values are chosen such that the

closed loop transfer function is stable and meets the

desired performance criteria. The gain of the proportion-

al feedback loop, k I, is chosen first and then using this

value, the gain in the integral control action, k 2, is

selected. For stability and better performance the gains

are chosen so that the poles of the closed loop transfer

function are inside the unit circle and near the origin

(2,3).

Figure II.2.3c shows the discrete block diagram for

the system. Gt(Z) is the z-transform for the turbine

transfer function, zero order hold, and sampler, and is

given as (Appendix II.B)

C(z) C2z2 + CIZ + Co
G (z) =-- =
t D(z) 2

z + DlZ + Do

where the coefficients in polynomials C(z) and D(z) are

obtained as

C 2 = -1.300 ft-lb/deg D1 = 0.782

C 1 = -8.251 ft-lb/deg Do = 0.184

Co = -4.014 ft-lb/deg

Substituting for the coefficients in the transfer

function, it can be written as

(z + 0.531) (z + 5.815)

Gt(z) = (-1.30 ft-lb/deg) ((z + 0.391 + i0.176))
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Figure II.2.3d shows the location of poles and zeros

of the turbine transfer function.

From Fig. II.2.3c, the transfer function for the

inner feedback loop with proportional gain k I between

output torque, TQ(z), and input control, U(z), is obtained

as

TQ(z)
Gl(Z) = U(z)

Gt(z)

1 + klGt(z)

The root locus of Gl(Z) for negative values of gain

is shown in Fig. II.2.3e with k I given as

D(z)
k I = (-1)  7Y7

= (0 769 deg/ft-lb) ((z + 0.391 ± i0.176))
" (z + 0.531) (z + 5.815)

The poles of the transfer function become unstable

(Izl > I) for k I <- 0.67 deg/ft-lb.

The overall closed loop transfer function of the

system shown in Fig. II.2.3c between output torque, TQ(z),

and reference torque, TQ r, is given as

TQ(z) k2ZGl(Z)
G(z) - =

TQr(Z) (z - I) + k2ZGl(Z)

Figure II.2.3f shows the root locus of the system

closed loop transfer function for gain k I = 0.0 and -0.i

deg/ft-lb with gain k 2 given as

k 2 = (-i)
(z - i) D(z)

zC(z)

= (0.769 deg/ft-lb) (z - l)((z + 0.391 ± i0.176))
z (z + 0.531) (z + 5.815)
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Figure II.2.3f shows that the poles of the closed

loop transfer function can easily become unstable for

small values of gain k I. Also, since the poles are away

from the origin, it will take many steps for the response

to reach steady state which is not desirable.

An alternative to the proportional feedback is to

trap the complex poles corresponding to flapping motion by

introducing a pair of zeros with the same coordinate

values in the z-plane. Figure II.2.4a shows the block

diagram of this model.

The transfer function for the inner feedback loop

with gain k I between output torque and input control is

given as

Gl(Z) =
TQ(z)
U(z)

Gt(z)

1 + K 1F(z) Gt(z)

where

G (z) -
t

C(z)

D(z)

C2 z2 + ClZ + Co

2
z + DIZ + DO

and

F(z) -

2
D(z) z + DlZ + DO

2 2
Z Z

Figure II.2.4b shows the root locus for Gl(Z) where

gain k I is given as

k I = (-I)

z2D(z)

D(z) C(z)

2
Z

= (0.769 deg/ft-lb) (z + 0.531) (z + 5.815)
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From Figure II.2.4a the closed loop transfer function

between output torque, TQ(z), and input reference torque,

TQr, is given as

G(z) - TQ(z) _
TQ r

k2z Gl(Z)

(z -1) + k2z Gl(Z)

Figure II.2.4c shows the root locus of the closed

loop transfer function for gain k I = -0.i deg/ft-lb where

k 2 is given as

k 2 = (-i)

(z - l) D(z) [z 2 + klC(Z)]

z3C(z)

= (0.769 deg/ft-lb)

(z-l)((z+0.391±i0.176))((z+0.365±i0.471))

z3(z+0.531)(z+5.815)

In order to keep the system closed loop transfer

function poles near the origin, the pole on the right half

circle was chosen at z = 0.5. The corresponding value for

gain k 2 is -0.4275 deg/ft-lb which makes the system un-

stable. Since the average transfer function was derived

for one nominal condition, other operating conditions may

not give the required pole and zero cancellation resulting

in possible instability of the system.

As was shown, the poles of the closed loop transfer

function can become unstable for small values of gain

k I. To make the system more stable and also keep the
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poles of the system closed loop transfer function near the

origin, gain k I is set to zero and a new controller is

introduced in the forward loop. It is a proportional plus

integral control which filters out the effect of the poles

of the turbine transfer function (notch filter). Figure

II.2.5a shows the block diagram of the system and the

controller. Pole z = p is selected such that the poles of

the closed loop transfer function are located at the

origin (dead-beat control). The system closed loop trans-

fer function between ouput torque, TQ(z), and input refer-

ence torque is given as

G(z) - TQ(z) = Gl(Z)

TQ r 1 + Gl(Z)

where

GI(Z) = KD(z) Gt(z )(z - 1) (z - p)

and

C(z)
Gt(z) =

Substituting and cancelling common terms Gl(Z) becomes

KC(z)
GI'Z" ' = (z - i) (z - p)

and

G(Z) =
(z - i)

KC(z)

(z - p) + KC(z)

K[C2z2 + ClZ + zo]

2
(KC 2 + l)z + (KC 1 - p - l)z + (KC o + p)
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Poles of the closed loop transfer function are located the

origin provided

KC 1 - p - 1 = 0

KC o + p = 0

or

-C o

p - Co + Cl -0.32727

1
K - = -0.08153

Co + C 1

where Co and C 1 are the coefficients of the numerator of

the turbine transfer function. Figure II.2.5b illustrates

the root locus for the closed loop transfer function where

K is given as

K = (0.769 deg/ft-lb)
(z - I) (z + 0.32727)

(z + 0.531) (z + 5.815)

The closed loop transfer function of the system then

becomes

G(Z) =
K (C2z2 + ClZ + CO )

2
(i + KC 2) z

Figure II.2.5c demonstrates the location of the poles

and zeros of the resulting closed loop system transfer

function.

To investigate the stability of the control system,

the turbine transfer functions obtained for positive and

negative step about the nominal condition are used instead
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of the average transfer function. Figure II.2.5d shows

the location of zeros and poles for each case. Both cases

are stable and only the case for positive step demon-

strates slightly oscillatory behavior. Figure II.2.6

shows the torque step response to a unit step change in

reference o torque for each case and the average model.
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Figure II.2.1. Power regulation curve.
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TOr
K2z_i_ Gt(z)

TQ

Figure II.2.3c. System discrete time block diagram.
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Figure II.2.3d. Location of poles and zeros of the wind
turbine blade transfer function.
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K
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Figure II. 2.3e. Root locus illustration of the system
inner loop with proportional feedback
controller.
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Figure II.2.3f. Root locus illustration of the system

closed loop transfer function for gain

a) k I ffi0.0, b)k I = -0.i deg/ft-lb.
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TO r
K2 z_ Gt(z)

TQ(z)

Figure II.2.4a. Discrete block diagram of the wind
turbine blade and notch filter feedback

controller.
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Root locus illustration of the system

closed loop transfer function for gain

kl = -0.I deg/ft-lb"
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TO r _(z)! _ TQ(z)

Figure II.2.5a. Discrete block diagram of the wind
turbine blade and notch filter feedback

controller with integral action.
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Figure II. 2.5b. Root locus illustration of the system

closed loop transfer function with

notch filter and dead beat controller.
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Figure II.2.5c. Location of poles and zeros of the

system closed loop transfer function.
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Figure II.2.5d. Location of poles and zeros of the

system closed loop a) positive step

transfer function, b) negative step
transfer function.
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CHAPTER II.3. IMPLEMENTATION OF THE CONTROL MODEL
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II.3.1 Controller Implementation

Figure II.2.12 shows the wind turbine discrete feed-

back control model developed in Chapter II.2. The control

action and wind turbine transfer functions are given as

G (z) = TQ(z)
t Q(z)

e(z)
G (z) =
c e(z)

2
C2z + ClZ + C o

2

z + DlZ + Do

K[z 2 + DlZ + Do ]

(z - i) (z - p)

Applying the control action, the regulation algorithm is

obtained as

e(i) = e(i - i) + K¢(i)

¢(i) = p¢(i - l) + e(i) + Dle(i - i) + Doe(i - z)

where

e(i), e(i - i), ... current and previous values of

the output error

¢(i), ¢(i - I), ... filtered control error

e(i), e(i - i), ... pitch angle command to actuator

Do , DI, p constant control parameters

K control gain

The wind turbine torque was evaluated by calculating the

total moment of all loads acting on the turbine blade

about the axis of rotation (i). Turbulence velocity in-
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puts to the wind turbine simulation code were generated

using the results developed in Section I. Only uniform

and gradient turbulence terms were considered.

Table II.3.1 demonstrates the control action logic

implementation to control the output torque of the tur-

bine. The control can be turned on or off and turbulence

can be generated for different wind conditions. For this

analysis a turbulence length scale, TL, of 250 ft and an

intensity ratio, TI, of 15% are used.

In testing the control algorithm, it was determined

that the static open loop gain of the wind turbine blade

between the output torque and the input wind velocity

varies substantially with wind speed. A static sensitiv-

ity analysis of the turbine at the nominal power output

was conducted where changes in torque for a step change of

0.5 and -0.5 degrees in pitch angle from the pitch angle

corresponding to the nominal torque were obtained for

different wind speeds. Figure II.3.1 shows the results

which demonstrates higher static gain at higher wind speed

and, therefore, larger response which may cause instabil-

ity of the system. The control action gain was then modi-

fied using a cubic polynominal fit of the static sensitiv-

ity data to maintain an overall constant gain at different

wind speeds.

The modified regulation algorithm then becomes

e(i) = e(i - i) + K*¢(i)



¢(i) = -0.327 ¢(i - I) + e(i) + 0.782 e(i - I)

95

-- 0.184 e (i - 2)

K* --
-0.08153 De@/Ft-lb

9.80 (V_)3- 47.02 (V_2 + 83.87 (V_)2 - 45.61

VN _ VNOMINA L = 18.5 MPH



Table II.3.1. Control Algorithm Logic.

96

IF (OLD PITCH = FIXED VALUE) THEN

IF (OUTPUT > REFERENCE)

NEW PITCH = REGULATED VALUE

ELSE

NEW PITCH = FIXED VALUE

ENDIF

ELSE

NEW PITCH = REGULATED VALUE

IF (NEW PITCH < FIXED VALUE) THEN

NEW PITCH = FIXED VALUE

RESET REGULATION

ENDIF

ENDIF
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CHAPTERII.4. RESULTS AND CONCLUSIONS

for two winds speeds without turbulence were obtained.

Figure II.4.1 shows the torque response and corresponding

blade pitch angle correction for 20% reduction in nominal

torque at 20 mph wind speed. It is seen that the system

reaches 99.5% of the steady state torque in eight revolu-

tions (9.6 sec) with maximum overshoot of 2% which is well

within the defined initial objectives for the controller.

Similar results for 35 mph wind speed are shown in Fig.

II.4.2 which demonstrates similar characteristics. The

controller is shown to be stable at both ends of the

operating range. Instantaneous single blade torque for

fixed pitch (no control) and with active control for 20

mph wind speed are plotted in Figs. II.4.3 and II.4.4.

Average single blade torque over each revolution for 12

revolutions for each case is shown in Fig. II.4.5. Simi-

lar results for 35 mp wind speed are demonstrated in Figs.

II.4.6 to II.4.8. Table II.4.1 summarizes the statistical

characteristics of the blade torque response in the turbu-

lence for 20 mph and 35 mph wind speed. For the 20 mph

wind speed, closer mean torque response to the reference

torque of 324 ft-lb and smaller standard deviation are

achieved with active control than with fixed pitch. The

mean torque response is also maintained closer to the

reference torque for the 35 mph wind speed. However, a
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higher standard deviation resulted in this case which is

directly related to the control action being implemented.

Since the variance of the input turbulence in the model is

large for 35 mph wind speed and turbulence intensity of

15%, a slow controller which is only active after each

revolution could allow large deviations in instantaneous

blade torque from the mean torque and, therefore, a large

standard deviation. A faster controller which can correct

the blade pitch angle more often than once every revolu-

tion will reduce extreme fluctuations of the blade torque.

These statistics were compiled for 12 revolutions or 9.6

sec and a longer run stream is required to more precisely

estimate these results. However, every run of the model

costs about 200 cpu sec so this task is left as a future

expansion of this work when more funding is available.

CONCLUSIONS

A discrete-time control algorithm is used to regulate

the output torque of a wind turbine by changing the pitch

angle of the turbine blade. The method is suitable for a

wide class of pitch regulated turbines. The algorithm

works well in conjunction with turbulence inputs. Torque

response fluctuations for high wind speeds are excessive

and a faster controller can help to reduce that. Also,

further testing on a real machine is required to verify

the present analysis.



Table II.4.1. Single Blade Torque Response in
Turbulence.

Turbulence Intensity = 15%

Reference Torque = 324 ft-lb

i01

20 mph 35 mph

Torque Fixed Active Fixed

(ft-lb) Pitch Control Pitch

Active

Control

Average 330.0 324.1 337.8

St. Dev. 17.0 13.9 33.0

330.5

48.9
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LINEAR LEAST-SQUARESREGRESSION (i)

For the general regression problem, the form of the

relation

y = f(x,a) (A.I)

where: x = independent variable

a = vector of parameters

y = dependent variable

is known and it is desired to determine the vector of

parameters, a, when several data points (x i, yi ) are

given. In the case when the parameters appear linearly,

i.e.,

Y = alfl(x) + a2f2(x) + ... + anfn(X) (A.2)

the data parameters form a set of linear equations given

by

n

j_l fj(xi)aj = Yi
i = 1,...,m (A.3)

When there are more data points than unknown param-

eters (i.e., m > n) the equations are overdetermined and

it is unlikely that all equations can be satisfied

exactly. When m < n the equations are underdetermined and

many different sets of parameter values can be found which

fit the data exactly. To determine a reasonable solution
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to the problem, the parameters can be chosen to minimize

the sum of the squares of the residuals, i.e.,

m
Mina [ (Yi - f(xi'a))2 (A.4)

i=l

It can be shown (2), in the case when the data are

given exactly by

Yi = F[x,a,) + e i (A.5)

where a, are the true parameters and e i are mutually

independent random errors which are normally distributed

with zero mean, that the least-squares solution is equiva-

lent to choosing the most probable values of a, given the

data (assuming no prior knowledge of a). In cases when

there are more parameters than data (i.e., m < n) it is

reasonable to set the last n-m parameters to zero then to

determine the remaining m parameters which fit the data

exactly.

In order to find the least squares solution, it is

convenient to put the problem in matrix form

y - Fa = e (A.6)

where



F

y

flCXl)
P f..

_ik_2 J

Yl

Ym
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e = residual vector (dimension m)

The necessary conditions for the minimum are easily found

by differentiating to be

'_e T

2(._a ) e =0

or using Eq. (A.6) and the definition of F

T
2(-F) (y-Fa) = 0

(A.7)

or, finally

(FTF)a = FTy (A.8)

The solution is unique when the matrix FTF is nonsingular.

Instead of solving Eq. (A.8) directly for

a - ,,rFTFI-1F Y (A.9)

Golub (3) suggested using the Householder (4) decomposi-

tion of the matrix F, i.e.,

F = QR (A.10)
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where Q is orthogonal and R has all elements below the

diagonal equal to zero. Thus, Eq. (A.8) can be rewritten

as

(QR)T(QR)a = (QR)Ty (A.II)

. Q-1 = QT)or since Q is orthogonal (i.e ,

(RTR_a = RTQTy
(A.12)

for the case when m > n, R is of the form

U

R _ • • •

0

where U is upper triangular, and the coefficient matrix

for a becomes

RTR - uTu (A.13)

Now, let the right hand side be partitioned so that

z 1

QTy = ...

z2

Since U and F have the same rank = n, Eq.

(A.14)

(A.14) becomes

Ua z Zl (A.15)

The solution to Eq. (A.15) involves only a simple back

substitution since U is triangular.



This procedure has been implemented in a standard

lib ti __= _.. __ T_m_, ,=_ .__ _,

utilized to compute the regression parameters in the

turbulence model.

118
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APPENDIX I.B DIGITAL SPECTRAL ANALYSIS

The power spectral density of a stationary random

process x(t) is defined as

m

Sx(_) = f Rx(_) e -i_t dt (B.I)

where Rx(T) is the autocorrelation function of x(t) given

by

R (T) = E [x(t)x(t+T)] (B.2)
x

If the random process x(t) is sampled at intervals A (con-

stant) then the discrete value of x(t) at time t = rA is

written xr and the sequence {Xr} , r = 0, i, 2, ..., is

called a discrete time series. The objective of time

series analysis is to determine the statistical character-

istics of the original function x(t) by manipulating the

discrete time series {Xr}. The main interest is the fre-

quency composition of x(t). For this, the power spectral

density of x(t) is estimated by analyzing the discrete

time series obtained by sampling a finite segment of

x(t). Discrete Fourier transform (DFT) of a time series

{Xr}, r = O, i, 2, ..., (N-l) is defined as follows:

2wk_

1 N-I r
Xk = _ r=0[ xr e k = 0, i, 2, ..., (N£1)

(B.3)
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and the inverse discrete Fourier transform (IDFT) is given

by

N-I i 2_r
(-y-)k

xr = _ Xk e
k=0

r = 0, l, 2, ..., (N-l)

(B.4)

where the range of the Fourier components Xk is limited to

k = 0 to (N-I) corresponding to harmonics of frequency

Sk = T

2_k 2_k where T = NA is the finite segment of the
NA

sampling function x(t) and A is the sampling interval.

It can be shown (I) that the spectrum of x(t) can be

estimated by _(_k) as follows

_(_k ) , TS k (B.5)

where Sk is the DFT of the discrete autocorrelation Rr

which for two random processes x(t) and y(t) and their

corresponding sampled time series {Xr} and {Yr} is given

by

N-I
1

R --- [r N XsYs+r
S=0

r = 0, i, 2, ..o, (N-l)

(B.6)

Substituting for xr and Yr from (B.4) it is possible to

demonstrate that Sk can be obtained as



Sxx k = X_ Xk

Sxy k = X_ Yk
(B.7)
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Syxk = Y_ Xk

Syyk = Y_ Yk

where the complex conjugate of X and Y are denoted at X*

and Y*.

The fast Fourier transform subroutine listed in

Reference (i) is used to evaluate the DFT's of the time

series. The FFT works by partitioning the full sequence

{x r} into a number of shorter sequences. Instead of cal-

culating DFT of the original sequence, only the DFT's of

the shorter sequences are computed and then averaged to

yield the full DFT of {Xr} . A cosine data taper function

is used to smooth the data at each end of the data record

before carrying out the DFT to improve the shape of the

resulting spectral density (2,3).
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APPENDIX C. COMPUTER CODE LISTING
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Listing of the program SIMULX.
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PROGRAMSIMULX (INPUT,0UTPUT)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

PROGRAM SIMULX GENERATES THE WIND TURBULANCE AT POINTS ALONG THE C

BLADE IN THE ROTOR DISK AND FINDS THE FREQUENCY SPECTRUM OF EACH C

VELOCITY COMPONENT. A UNIFORRMLY DISTRIBUTED RANDOM NUMBER IS C

GENERATED TO SIMULATE WHITE NOISE. EACH TURBULENCE VELOCITY TERM C

_DELED AS A STATIONARY RANDOM PROCESS GIVEN BY _ EQUATION

THE PORM

D(U) / DT + A * U = B* W

C

C

C

C

C

C

C

C

C

WHERE W : HON-DIMENSIONAL ZERO MEAN WHITE NOISE WITH POWER

SPECTRAL DENSITY SWo

A; : ATMOSPHERIC PARAMETER CONSTANTS.
B

SOLUTION TO THIS EQUATION FOR A DISCRETE TIME WHITE NOISE CAN BE

WRITTEN AS

WHERE

U(K+I) = PHI(K,K+I) m U(K) + W(K)

: SOLUTIONS AT TIMES T(K); T(K+I)U(K);
U(K+I)
PHI(K),K+I) : TRANSITION FUNCTION FROM TIME T(K)

TO T(K+I )

W(K) : DRIVEN RESPONSE AT T(K+I) DUE TO THE

PRESENCE OF WHITE NOISE INPUT DURING TIME

T(K), T(K+I ) INTERVAL. NOTE THAT W(K) IS
A WHITE NOISE RANDOM SEQUENCE.

SUBROUTINE ATMOS GENERATES THE ATMOSPHERIC CONSTATNTS PARAMETERS

A'S AND B'S. SUBROTINE RANDOM GENERATES A SEQUENCE OF UNIFORMLY

DISTRIBUTED RANDOM NUMBERS WHILE ROUTINE MEANVAR CALCULATES MEAN

VARIANCE OF TIME SERIES.

SUBROUTINE PSI) IS USED TO GENERATE THE SPECTRUM OF THE GENERATED

SIGNALS. STANDARD PLOT OF RANDOM VELOCITY VS TIME IS OBTAINED

USING SUBROUTINE PLTSTND. SUBROUTINE PLTLOG PROVIDES LOG-LOG

PLOT FOR SPECRUM VS FREQUENCY.

IF THE NUMBER OF GENERATED RANDOM VELOCITY

COMPONENTS, NRVELOC, IS NOT EVENLY DIVISIBLE BY

LENGTH OF THE SPECTRUM, LSPECT, THEN NRVELOC
MUST BE SMALLER THAN THE DECLARED SIZE OF RANDOM
VELOCITY COHPOHENT ARRAYS AT MOST BY LSPECT SO

AFTER PADDING THE TIME SERIES IT IS NOT OVER SIZED.

N(YrE:

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
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C C
C LIST OF ARGUEMENTS: C

C CONST : CONSTATNT CO_'yiCiF_qT iN T-l_ POWER ftF_ID_-_ ALGORITi_ C
C (SUBROUTINE RANDOM) FOR GENERATION OF UNIFORML_ C

C DISTRIBUTED RANDOM NUMBERS C

C DIVIDER : MODULE USED IN FUNCTION MOD(. ) IN SUBROUTINE RANDOM C

C SEED : INITIAL RANDOM NUMBER USED IN THE POWER RESIDUE C

C ALGORITHM, SUBROUTINE RANDOM C
C Iq_COMP : NUMBER OF TURBULENT VELOCITY TERMS IN THE ATMOSPHERIC C

C MODEL C

C NRVELOC : NUMBER OF ELEMENTS OF RANDOM TURBULENT VELOCITY C

C COMFONEMTSSEQUENCE C
C NPTS : NUMBER OF POINTS ALONG THE BLADE AT WHICH TURBULENT C

C VELOCITY IS EVALUATED C
C NEINS : HUMBER OF SUBINTERVALS ON THE POSITIVE VELOCITY C
C AXIS FOR DETERMINING PROBABILITY DISTRIBUTION C
C PROBDIS : ARRAY OF SIZE (2"IMBINS) WHICH CONTAINS PROBABILITY C
C DISTRIBUTION OF THE TURBULENT VELOCITY COMPONENTS C

C IN EACH SUBINTERVAL(BIN) C
C VRANGE : MAXIMUM VALUE OF TURBULENT VELOCITY AS AN INTEGER C

C MULTIPLE OF ITS VARIANCE, SUBROUTINE PROB C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

o

Q

J

INTEGER kq/COMP,NPT3, LSPECT, LP2,NRVELOC

INTEGER NBINS,NLABEL, CONST

PARAMETER (LSPECT= 128,LP2=7)
PARAMETER (NWCOMP=12,NPT3=1 ,NLABEL=I ,NBINS=16)

REAL R,ROTR, OMEGA, OMEGAZ, DELTAT, DIVIDER, VRANGE

REAL VX(6500) ,VY(6500) ,VZ(6500) ,Y(6500) ,X(200)
REAL PROBDIS(2_NEINS)

REAL XX(NPTS) ,n(m_Ts) ,ZZ(NPTS)

HEAL A(NECOMP),B(NWCOMP),CC(NWCOMP) ,DD(NECOMP)
REAL PS¥(LSPECT/2+I ) ,F(LSPECT/2+I ) ,SOUT(LSPECT/2+I )
COMPLEX ZY(LSPECT)
DOUBLE PRECISION SEED

CHARACTER _7 FILEIN, FILEOUT, LABEL(NLABEL)mqO
CHARACTER o2 ANS1, ANS° 1
COMMON /TURBINE/ OMEGA,OMEGAZ,ROTR

COMMON �WIND� TL,TI,SW,VW

COI_ON /ATMOS/ A,B
COMMON /RAND/ CONST, SEED, DIVIDER
NAMELIST /INDATA/ CONST,DELTAT,DIVIDER,SEED,NRVELOC,OMEGA,

& OMEGAZ, ROTR, RRATIO, TI, TL, VRANGE, VW

.... CONVERSION FACTORS ....

PI = ACOS(-I.)
CDEGRAD = PI/180.

CRPMRPS = 2.0PI/60.
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J

881

CMPHFPS = 5280./3600.

.... INTERACTIVE : SELECT INPUT AND OUTPUT FILES,

OPEN FILES, READ DATA FILE. USE NAMELIST.

PRINT _, ' '

PRINT m, 'ENTER NAME OF THE NEW DATA FILE '

READ '(A)' FILEIN

OPEN (5,FILE=FILEIN)

PRINT m, ' '

PRINT _, 'ENTER THE NAME OF OUTPUT FILE '
READ '(A)' FILEOUT

OPEN (6,FILE=FILEOUT)
J

.... INPUT ....

• .... READ THE PLOT LABELS ....
o

DO 100 I=I,NLABEL
READ CS,'(A)') LABEL(I)

100 CONTINUE

READ (5,INDATA)
REWIND (5)
CLOSE (5)

.... PRINT ECHO OF INPUT DATA ....

pRINT _, , ,

PRINT 5, 'CONST =', CONST

PRINT 6, 'DELTAT :', DELTAT

PRINT 7, 'DIVIDER =', DIVIDER

PRINT 7, 'SEED :', SEED

PRINT 5, 'NRVELOC :', NRVELOC

PRINT 6, 'OMEGA

PRINT 6, 'OMEGAZ

PRINT 6, 'ROTR

PRINT 6, 'RRATIO

PRINT 6, 'TI

PRINT 6, 'TL

PRINT 6, 'VRANGE

PRINT 6, '_

=' OMEGA

=' OMEGAZ

:' ROTR
=' RI_TIO
-' TI
=' '1_

t

=' VRANGE
t

t

FORMAT (1X,A15,IS)

FORMAT (1X,A15,F12.3,T35,A15)

FORMAT (1X,A15,E20.13)

J

w

I

5
6
7

J
J
J

, '(SEC)

, '(_H)

, '(DEG)

, '(FEET) '

, '(PERCENT) '

, '(FEET) '

, '(MILES/HR)'

.... INTERACTIVE: CHANGE DATA VALUES & REPEAT ECHO CHECK OR CONTINUE ..

PRINT _, ' '

PRINT _, 'DO YOU WANT TO CHANGE ANY VALUES ? ENTER(Y OR M)'
READ '(A)' ANS

t

IF (ANS .EQ. 'Y') THEN

pRINT o, ' ,
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PRINT t, 'TO CHANGE VALUES, LEAVE COLUMN 1 BLANK AND TYPE'
PRINT _, '$INDATA FOLLOWEDBY VALUE ASSIGNMENTS IN THE FORM:'

Ji..._ ,.at .t1-_ ivamm ,tat tMq A |

I"II,.LNJ." _', "NMtVU_ = V/tJ_UW'-t RHL'IZ, - VHL, UE, ,..., ;I)"

PRINT _, 'NOTE : COLUMN 1 MUST BE BLANK; TERMINATE WITH $ '
READ INDATA
PRINT l, ' ,
GOTO1

ENDIF
O

..... UNIT CONVERSIONS : (RPM) TO (RAD/SEC); (DEG) TO (RAD) ....

* (_H) TO (FT/SEC)
O

OMEGA : OMEGA • CRPMRPS

OMEGAZ = OMEGAZ • CDEGRAD

VW : VW t CMPHFPS

t

O

WRITE (6,10) CONST,SEED,DIVIDER

FORMAT(//,5X, 'POWER RESIDUE METHOD WITH THE FOLLOWING PARAMETERS'

& ,/,SX,'IS USED TO GENERATE UNIFORMLY DISTRIBUTED RANDOM '

& ,'NUMBERS' ,//,10X, 'CONSTANT COEFF, CONST' ,T35, '= ',I8,/, 10X

& ,'SEED' ,T35, '= ',IX,E15.8,/, lOX
& ,'MODULE DIVIDER, DIVIDER' ,T35, '= ',IX,E20.13)

oooe

• .... GENERATE ATMOSPHERIC COEFFICIENTS ....
J

oooo

CALL ATMOS
J

oeeo

• .... PRINT ATMOSPHERIC COEFFS ....

WRITE (6, 15)
15 FORMAT(II, 20X, 'ACOEFF', 12X, 'BCOEFF' )

DO lqO I=I,]NCOMP
WRITE (6,20) I,A(I),B(I)

20 FORMAT(/,SZ, I5,SX,E13.6,SX,E13.6)
1riO CONTINUE

II
oooo

w .... GENERATE RANDOMVELOCITIES ...
J

eeee

R = RRATIO • ROTR

ANGSTEP = DELTAT _ OMEGA

IF (k'PTS .EQ. I) THEN

BEGINR = R

FIk'R : R
ELSE

I_SEG:NPTS- 1

PRINT _, 'NO. OF SEGEMENTS ALONG THE BLADE, NSEG= ',NSEG

PRINT o, 'NO. OF POINTS ALONG THE BLADE WHERE VELOCITY '

PRINT o, 'COMPONENTS ARE CALCULATED, k'PTS= ',NPTS

PRINT _, 'ENTER THE BEGINNING AND FINAL RADIUS ALONG THE '

PRINT _, 'BLADE, BEGINR, AND FINR.'

READ o, BEGIk'R,FINR
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Q

ENDIF

DO 200 J=I,NRVELOC
PSI =J_ANGSTEP+OMEGAZ

CALL TURB3 (XX,I'Y,ZZ,DELTAT,BEGIB-R,FINR,MPTS,PSI)

vx(a)--xx(I)
VY(J)= YY(1)

VZ(J)= ZZ(1)
200 CONTINUE

• .... CALCULATE MEAN AND VARIANCE OF THE TIME SERIES
I

oooo

CALL MEANVAR (VXMEAN, VXVAR, VX, NRVELOC)
CALL MEANVAR (VYMEAN, VYVAR, VY, NRVELOC )

CALL MEANVAR (VZMEAN, VZVAR, VZ, NRVELOC)

aleeg

i
oooe

WRITE (6,25) NRVELOC, DELTAT, R,OMEGA, OMEGAZ, VW, TL, TI, SW

& , VXMEAN,VXVAR, VYMEAN,VYVAR, V7..MEAN,VZVAR
25 FORMAT(//,IOX, 'NUMBER OF RANDOM VELOCITIES GENERATED, 14RVELOC'

&

&

&

&

&

&

&

&

&

&

&

&

&

,T65,'= ',I5,/,10X,'TIME STEP TO GENERATE THE RANDOM '

,'VELOCITY, DELTAT' ,T65, '= ',E12.5,/,10X, 'RADIAL DISTANCE '

,'TO SELECTED POINT ALONG THE ROTOR, R',T65, '= ',E12.5,/

,IOX, 'ROTOR SPEED, OMGA' ,Tqq, '= ',EI2.5,T6q,' (RAD/SEC) ' /

,IOX, 'INITIAL ROTATION, OMEGA-ZERO' ,Tq;4,'= ',E12.5,T6_4

,'(PAD) ',/, IOX, 'WIND VELOCITY, VW' ,Tqq, '= ',E12.5,T6_4

,'(FEET/SEC) ',/, 10X, 'TURBULENCE INTEGRAL SCALE, TL' ,T4q

'(FEET) ',/ IOX, 'TURBULENCE INTENSITY ''- ',E12.5,T64, ,

,'TI' ,TqJ4,'= ',EI2.5,T6_, '(PERCENT) ',/, IOX, 'SPECTRUM OF THE '

'INPUT WHITE NOISE, SW =',T65,'= ',EI2.5,SX,'(SEC)' /,IOX

,'MEAN VALUE OF VX -'-,EIq.7,4X,'VARIANCE OF VX --',EI_4.7,/,10X

,'MEAN VALUE OF VY =' ,EI_.T,4X, 'VARIANCE OF VY =' ,EI4o7,/,10X

,'MEAN VALUE OF VZ =',EIq.7,qX,'VARIANCE OF VZ --',E14.7)

220
4t

DO 220 J=l ,NRVELOC
VX(J) =VX (J)-VXMEAN
vY(J) =VY(J)-Vm4EAN
VZ(J)=VZ(J)-VZMEAN

CONTINUE
oooQ

PRINT _, 'TO GET LIST OF GENERATED RANDOM VELOCITIES VX, VY, VZ '
PRINT _, 'ENTER (Y OR N)'

READ '(A)' ANS

IF (ANS .EQ. 'Y') THEN

PRINT m 'ENTER THE NO. OF RANDOM VELOCITIES TO PRINT '

PRINT _, 'UP TO NRVELOC=' ,NRVELOC

READ _, NOUT

WRITE (6,27) NOUT, DELTAT

DO 225 J=1 ,//OUT

WRITE (6,29) J,VX(J),VY(J),VZ(j)
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225

,,f

&
29

J
oooe

CONTINUE

ENDIF

_I.J_JL_'LJ. _,// 9 I_/A,; 111_IL'LI_,IL_ _E L_4'IJ.1L/VI,_ JLIW&'U_AI_# _%'/ kAi'kAI"Lg_W_'J_J*-- 9"a,_9 I 9

& 10X, 'TIME STEP TO G_FEI_TE THE RANDOM VELOCITIES '

& ,'VX, VY, VZ, DELTAT=',EIO.3,/,T28

,'VX' ,T_8, 'VY' ,T68, 'VZ',' (MEANS ARE SUBTRACTED) ')

FORMAT (IOX,I_,T20,EI4.7,T_O,EIq.7,T60,E14.7)

m .... PLOT RANDOM VELOCITY TIME SERIES VS TIME ....

PRINT o, 'TO USE SUBROUTINE PLTSTND TO PLOT THE GENERATED RANDOM '

PRINT _, 'VELOCITY VS TIME , ENTER (Y OR N) '

READ '(A)' ANS

882 IF (ANS .EQ. 'Y' ) THEN

PRINT _, 'SELECT THE RANDOM VELOCITY TIME SERIES. ENTER '

PRINT _, ' VX OR VY OR VZ. '

READ '(A)' AN$1

PRINT _, 'ENTER THE LENGTH OF RANDOM VELOCITY TIME SERIES '

PRINT _, ',LVPLT FOR PLOTTING UP TO NRVELOC =' ,NRVELOC

READ _, LVPLT

IF ( ANSI .EQ. 'VX' ) THEN

DO 230 I=I,LVPLT

_(I)=VX(I)

230 CONTINUE
ELSEIF ( ANSI .EQ. 'VY' ) THEN

DO 232 I=I,LVPLT
Y(I)=VY(I)

232 CONTINUE

ELSEIF ( A_S1 .E_. 'VZ' ) THEN

DO 23q I=I,LVPLT

Y(I)=VZ(I)

23_ CONTINUE
ENDIF

oooo

II,
eoee

CALL PLTSTND (Y,LVPLT,D£LTAT,ANSI)

PRINT

PRINT

PRINT _, 'DO YOU WANT TO PLOT ANY OTHER RANDOM VELOCITY '
PRINT _, 'TIME SERIES ? ENTER (Y OR N)'

READ '(A)' ANSt

GO TO 882
ENDIF

.... EVALUATE PROBABILITY DISRIBUTION OF RANDOM VELOCITY ....

PRINT _, 'DO YOU WANT TO EVALUATE PROBABILITY DISTRIBUTIONS OF'

PRINT _, 'THE GENERATED RANDOM VELOCITIES ? ENTER (Y OR N)'

READ '(A) ', ANS
IF (AN$ .EQ. 'Y') THEN

DO 250 KPROB =1,3
IF (][PROS .E_. 1) THEN

DO 2LIO I= 1 ,NRVELOC
Y(I)=VXCI)
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2qo

2q2

2q4

o
ooooo

2q5
o

eoee

J
cole

2q6

248
250

30

CONTINUE

VARIANC=VXVAR
ANS1 = 'VX'

ELSEIF (KPROB .EQ. 2) THEN

DO 2q2 I=I,NRVELOC
Y(I)=VY(I)

CONTINUE
VARIANC:VYVAR
ANS1 = 'VY'

ELSEIF (KPROB .EQ. 3 ) THEN

DO 2_4/tI=I,NRVELOC

Y(I)=VZ(I)

CONTINUE

VARIANC=VZVAR

ANSI : 'VZ'

ENDIF
GENERATE UNITY VARIANCE RANDOM VELOCITY TIME SERIES

DO 2q5 I=I,NRVELOC
Y( I)=Y(I)/SQRT (VARIANC )

CONTINUE

CALL PROB (Y, NRVELOC,//BINS, VRANGE, PROBDIS)

&

B3X2:2eNBINS

HBX2M I=h3X2- I

DELTAV=VRANGE/()BINS- I)

DO 2q6 I=I,)BX2MI
X(I)=-VRANGE+ (I- I)_DELTAV

CONTINUE

WRITE (6,30) ANSI,NRVELOC,ANSI

DO 2q8 I=I,NBX2
IF (I .EQ. I)

WRITE (6,32) X(I),PROBDIS(I)
ELSEIF (I .EQ. )BX2) THEN

IMI=I-I

WRITE (6,34) X(IMI),PROBDIS(I)
ELSE

IMI=I-I

PROBDEN = PROBDIS(I)/DELTAV

XAVE = (X(I)+X(IMI))/2.

STNDEN = EXP(-O.5OXAVE_2)/SQRT(2._PI)

WRITE (6,36) X(IMI ),X(I) ,PROBDIS(I) ,XAVE,PROBDEN

,STNDEN
ENDIF

CONTINUE

CONTINUE

ENDIF

FORMAT (//,IOX,'PROBABILITY DISTRIBUTION OF RANDOM VELOCITY '

& ,'TIME SERIES',A_,' OF LENGTH = ',IS,//,10X

& ,'PROBABILITY OF VARIATES', 15X, 'MID-INTERVAL' ,SX

& ,'PROBABILITY DENSITY' ,SX, 'STANDARD NORMAL' ,/, 10X
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& ,'IN THE INTERVAL' ,T66, 'ORDINATES OF ',A4,T93

& ,'ORDINATES' ,/)

3_ FORMAT (10X, 'GREATER THAN ','(',F6.2, ') = ',E 1I.4)

'(',F6.2,' ',F6.2 ') -',EII.4,T52,F6.236 FORMAT (15X, , ,

& ,T68,E12.6,TgO,E12.6)
o

oooe

e, .... GENERATE FREQUENCT SPECTUM OF THE GENERATED _H VELOCITY ....
41,

Doge

PRINT J, 'DO YOU WANT TO GENERATE THE FREQUENCY SPECTRUM OF '

PRINT • 'THE TIME SERIES ? ENTER (Y OR N)'

READ 'CA)' _S

88q IF (ANS .EQ. 'Y') THEN

PRINT • 'INPUT ONE TIME SERIES TO GENERATE SPECTRUM. '

PRINT • 'ENTER VX OR VY OR VZ '

READ '(A)' ANSI

IF (ANS1 .EQ. 'VX' ) THEN

DO 252 I= 1 ,NRVELOC
Y(I):VX(I)

252 CONTINUE

ELSEIF ( ANS1 .EQ. 'V¥' ) THEN

DO 25_ I=I ,NRVELOC

Y(I)=VY(I)

25L1 CONTINUE

ELSEIF ( ANSI .EQ. 'VZ' ) THEN

DO 256 If1 ,NRVELOC
_(I):VZ(I)

256 COB'TIMUE

ENDIF

J
eeoo

oooo

J
oeoe

t
oooo

J
ooo*

J
eeoo

J
oooe

ooee

o
eoee

t
oooo

300

LENGTH OF THE TIME SERIES HAS TO BE EVENLY DIVISIBKE ....

BY L, LENGTH OF EACH SUBSEC_. IF THIS CONDITION ....
DEOS HOT MEET PAD BOTH TIME SERIES WITH ZEROES AT ....

RIGHT END .....

NOTE: IF THE NUMBER OF GENERATED RANDOM VELOCITY ....

COMPONENTS, NRVELOC, IS NOT EVENLY DIVISIBLE BY ....

LENGTH OF THE SPECTRUM, LSP_ZT, THEN NRVELOC ....
MUST BE SMALLER THAN THE DECLARED SIZE OF RANDOM ....
VELOCITY COMPONENT ARRAYS AT MOST BY LSPECT .....

ooev

LD2=L.SPECT/2
LD2P 1=LD2+ 1
NSEG=INT(NRVELOC/LSPECT)
RgSEG--REAL(NRVELOC)/REAL(LSP CT)
DIFF=RNSEG-NSEG

IF(DIFF .NE. 0.0) THEN

LTS= (NSEG+ 1 )*LSPECT
IPADfNRVELOC+I

DO 300 J=IPAD,LTS

CONTIIRIE
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oeoe

oeeo

o
eooo

i
eeeo

325
o

eeoc

tl
oooo

3qo
tl

ooee

345

_2

o
eeoo

J
oooe

t
eeoc

370
J

oooo

t
oeoo

J
oooo

380
48,

eooo

tt
oeoo

tt
ooeo

t
oooo

_IF

CALL PSD (Y,LTS,LSPECT,LP2,DELTAT,PSY,ZY)

FORM THE FREQUENCY VECTOR ....

DO 325 I=I,LD2PI

II=I-I

F(I)=II/(LSPECT_DELTAT)

CONTINUE

PRINT POWER SPECTRUM ....

WRITE (6,LIO) ANS1

DO 340 I=I,LD2P1

WRITE (6,42) F(I),PSY(I)

CONTINUE

PRINT SUM OF THE POWER SPECTRA ....

SUMY=0.0

DO 345 K=I,LD2P1
SUMY=SUMY+PSY(K)

CONTINUE

WRITE (6,"_) ANS1 , SUMY
FORMAT(//,5X,'FREQUENCY',T20,'POWER SPECTRUM',/,T2q,A4)

FORMAT(4X,FIO.4,T20,E14.7)

FORMAT(//,10X,'SUM OF THE PSI) OF(',A4,' )S=',E14.7)

ELIMINATE ZERO FREQUENCY FOR LOG-LOG PLOTTING ....

DO 370 I=2,LD2P1
J=I-1

F(J)=F(I)

CONTINUE

PLOT LOG-LOG SPECRTAL DENSITY OF RAk'DOM VELOCITY VS FREQUENCY ....

PRINT _, 'TO USE PLTLOG TO PLOT THE SPECTRUM ENTER (Y OR N)'

READ '(A) °, ANS

IF (AN$ .EQ. 'Y') THEN

GENERATE SPECTRUM VECTORS ......

DO 380 I=2,LD2PI

J:I-1

SOUT(J)=PSY(I)
CONTINUE

PLOT POWER SPECTRUM

CALL PLTLOG (SOUT,F,LD2,LABEL,ANS1)

PRINT •

ENDIF

PRINT • 'DO YOU WANT SPECTRUM FOR OTHER TIME SERIES? '
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PRINT _, ' ENTER (Y OR N) '
READ 'CA)' AN39

i_iDIF

PRINT _t 'DO YOU WANT TO PROCE33 ANOTHER DATA FILE ? '

PRINT o, 'ENTER (Y OR N)'

READ '(A)', ANS
IF (ANS .EQ. 'Y') GO TO 881

STOP

END
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SUBROUTINE TURBS (XX,YY,ZZ,DELTAT,BEGINR,FINR,NPTS,PSI)

SUBROUTINE TURBS CONSTRUTS TURBULENCE VELOCITY COMPONENTS

ALONG THE BLADE FOR EACH AZIMb_ ANGLE AT EACH TIME STEP.

THE NUMBER OF POINTS ALONG THE BLADE AT WHICH TURBULENCE

VELOCITY IS EVALUATED IS GIVEN AS A PARAMETER , NPTS IN

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C C
C C
C C
C C

C C
C PROGRAM SIMULX, AND CAN EASILY BE CHANGED. THE TURBULENCE C

C VELOCITY COMPONENTS ARE COMPUTED AT EQUALL_ DISTANCED C

C POINTS ALONG THE BLADE FROM AN INITIAL RADIUS TO A FINAL C

C RADIUS WHICH USER CAN DETERMINE. C

C IN THE PRESENT ANALYSIS ONLY ONE RADIAL POSITION AT THE C

C TIP WAS CONSIDERED (NPTS = I). C

C C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

INTEGER CONST,NPTS,NWCOMP

REAL BEGINR,FINR,DELTAT,PSI ,DIVIDER
PARAMETER ( Iq_COMP=12 )
REAL xx(m_rs) ,n(MPTS) ,ZZ(NPTS),U(_WCOMP),W(NWCOMP)
REAL A(NWCOMP),BCNWCOMP) ,CC(NWCOMP) ,DD(NWCOMP)
DOIIBLE PRECISION SEED

COMMON /TURBINE/ OMEGA,OMEGAZ,ROTR

COMMON /WIND/ TL, TI, SW, VW

COI'g'fON/ATM03/ A, B
COMMON /RAND/ CONST, SEED, DIVIDER
SAVE W
DATA W /NWCOMP I 0.0/

I .... GENERATE COEFFICIENTS FOR FILTERS .....

DO 10 I=I,NWCOMP
AT=DELTATeA (I)

CC(I)=EXP(-AT)

DD( I)=B(I)ISQRT ((6._SW/A (I) )_( I.-EXP (-2. IAT) ))

10 CONTIB-dE

• .... GENERATE NWCOMP RANDOM Iru_4BERS.....
I

oooo

CALL R_qDOH (U, _COMP )
t

eoeo

• .... GENERATE WIND VELOCITY COMPONENTS ....

DO 20 I= 1 ,)NCOMP
U(I)=U(I)-0.5

W(I) =CC(I)mW(I)+DD(I)eU(I)

20 CONTINUE

IF (NPTS .EQ. I) THEN

RSTEP=O.0
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30

&

&

&

ELSE

I_TEP= (FINR-BEGR) /(NPTS- I)

ENDIF

R=BEGINR
PSIX2=2ePSI

ROTRSQ=ROTReROTR
DO 30 I=I,NPT3

R=R+( I- 1 )Wl_TEP
E._=ReR
XX( I)=W( I)-(W(6)-W(7 ))eR_.OS(PZI )

-(W(8 )-W(9))_R_SIN( PSI )

YY( I)=W(2 )+W(5 )eRe_?_IS(PSI )+W(4 )eReSIN( PSI )

+W( 10)e( I_-I_12. )

+W( 11)eRSQ_ (PSlX2 )+W( 12)oRSQeSIN (PSIX2)

ZZ(I)=W(3)+(W(6)+W(7) )eR_SIN(PSI)
+(w(8)+w(9))*R_.,os(Psl)

CONTINUE

RETURN

END
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SUBROUTINE ATMOS

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C C

C SUBROUTINE ATMOS COMPUTES THE TURBULENCE MODEL PARAMETERS A, B, C

C AND SW, WHERE A(I) AND B(1) ARE THE DIAGONAL ELEMENTS FOR C

C THE MATRICES IN THE WIND STATE EQUATION C

C DX/DT = -A * X + B * W AND W IS WHITE NOISE WITH PSD=SW. C

C THE EQUATIONS WERE DETERMINED BY LEAST SQUARE REGRESSION TO C

C DATA PRODUCED BY NUMERICAL COMPUTATION. (SEE REPORT) C

C C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

INTEGER NWCOMP

PARANETER (NWCOMP=12)
REAL ROTR, TI, TL, SW, V'W

REAL A(m_COMP) ,BCNWCOMP)
COMMON /TURBINE/ OMEGA,OMEGAZ,ROTR

COMMON /WIND/ TL,TI,SW,VW

COMMON IATMOSI A,B

• .... CALCULATE THE POWER SPECTRUM FOR THE NOISE INPUT ....

SW=TL* (TI_ITI)/VW/10000.

RR=ROTR/TL

VWSQ=VWoVW

ROT_=ROT_2
DIMCOA= VW/_"_

DIMCOBZ=VWSQ/TL

DIMCOB I=VWSQ/(ROTH_TL)

DIMCOB2=VWSQ/(ROTI_a_L)

A( I)= (2.-2.89J4*RI_( I.-. 1383_RR)/( I.+2.0qgORR) ) *DIMCOA

B( I)= (2.-3.290"RR_( I.+.0270*RR)/( I.+2.05;4mRR) ) *DIMCOBZ
A(2)= (I.-I .713*RITm(I.-.0791"RR)/( I.+2.0q8*RR) ) *DIMCOA

S(2)= (SQRT(2.)-2.713"PJ_*(I.+.0159"Pa)/(I.+2.05I*19a))
+ *DIMCOBZ

A(3)= A(1)
s(3)= s(1)
A(4)= (.327/Pa + .595 - •1li4*Pa) , DIMCOA

B(_)= (.281/RR_H°.25 + .645- .150*RR) *DIMCOBI

A(5)= A(4)
S(5)= S(4)
A(6)= (.434/RR + .917 - .153_RR) *DIMCOA
B(6)= ( .258/RRa'w.25 + .6;47 - . 1093"RR) *DIHCOB1
A(7)= (.5342/Pa + 1.276 -.2147"Pa) *DIMCOA
B(7)= (. 1167/RR_HD.25 + .7733 -. 128J4_Pa) *DIMCOB1
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A(8)= A(7)
S(8)- 8(7)

. O:;)WI An _ ^'_"

B(9)= (.35q6/pa_H_.25 + .3951 + .2593"Pa) *DIHCOBI

A(10)- (I.091/Pa + .0276 + .0686"P_) ODIMCOA

B( 10)= (.5508/pa4HB.25 + .6473 -.1365wPa) *DIMCOB2

A(11)= (I.081/RB + .0279 + .0685mPa) ODIMCOA

B( 11)= (.3896/Pa_.25 + .4567 -.09qS*Pa) eDIMCOB2

A(12)- A(11)
B(12)= B(11)
RETURN
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SUBROUTINE RANDOM (S,N)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C C
C SUBROUTINE RANDOM GENERATES UNIFORMLY DITRIBUTED RANDOM C

C NUMBERS BETWEEN ZERO AND ONE USING POWER RESIDUE METHOD. C

C C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

10

INTEGER CONST,N

REAL DIVIDER,S(N)

DOUBLE PRECISION SEED, INTPROD

COMMON /RAND/ CONST, SEED, DIVIDER

DO 10 I=I,N
INTPROD=CONST_SEED

IF (INTPROD .LT. DIVIDER) THEN

S( I)=INTPROD

ELSE

S( I)=INTPROD- INT (INTPROD/DIVIDER)_DIVIDER

ENDIF

SEED=S( I)

S(I)=S(I)/DIVIDER
CONTINUE

RETURN

DID
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SUBROUTINE MEANVAR (MEAN,VAR,S,N)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C C

C C

C SUBROUTINE MEANVAR COMPUTES MEAN AND VARIANCE C

C OF TIME SERIES. C
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

20

30

INTEGER N

REAL MEAN,VAR,S(N)
SUM--O.

DO 20 I=I,N
SUM=SUM+S( I )

CONTINUE
ME_=SUMIFLOAT (N)
DIFF=O.

DO 30 I=I,N
DIFF=DIFF+ ($(I)-MEAN) H2

CONTINUE

VAR=DIFF/FLOAT(N)
RETURN

END
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SUBROUTINE PROB (VTS,LVTS,NBINS,VRANGE,PROBDIS)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C C
C SUBROUTINE PROB COMPUTES PROBABILITY DISTIBUTION C

C OF TIME SERIES. C

C C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

INTEGER LVTS,NBINS, BINIqUM
REAL DELTAV, VRANGE
REAL TI'S(LVTS) ,PROBDIS(2ONBIN$)
NBX2=2ONBINS

DO 20 I=I,MBX2
PROBD IS(I)=0.0

20 CONTINUE

DELTAV= VRANGE/(MBINS- I)

DO 30 I=I,LVT$

IF (VTS(I) .LT. 0.0 ) THEN

IF (VT$(I) .GE. -VRANGE ) THEN

BINNUM= NBINS+INT (VTS( I)/DELTAV )

ELSE

BINNUM=I
ENDIF

PROBDIS (BINNUM) =PROBDIS(BINNUM) + I./LVTS

ELSEIF (VT$(I) .GE. 0.0 ) THEN

IF (VTS(I) .LE. VRANGE ) THEN
BINNUM=MBINS+ INT (VT3( I)/DELTAV )+I

ELSE

BINNUM=2OMBINS

ENDIF

PROBDIS(BINNIR4) =PROBDIS(BINNUM) + I./LVTS

ENDIF

30 CONTINUE
RETURN

END
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SUBROUTINEPSD(Y,N,L,LP2,DT,PSY,ZY)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C C

C SUBROUTIME PSD USES FFT TO ESTIMATE THE FREQUENCY SPECTRUM OF C

C TIME SERIES C

C C

C ARGUMENTS C

C Y -INPUT VECTOR OF LENGTH N CONTAINING C

C THE TIME SERIES. C

C N -INPUT LENGTH OF THE TIME SERIES. C

C L -LENGTH OF THE TIME SERIES IN EACH SEGMENT. C

C L MUST BE A POWER OF 2. C

C LP2 -L=24HDLP2 (L AS POWER OF TWO) C

C LD2PI -SPECTRAL COMPUTATIONS ARE AT C

C LD2PI= (L/2)+1 FREQUENCE3. C
C DT -SAMPLING INTERVAL (SEC) C

C PSY -OUTPUT VECTOR OF LENGTH LD2PI CONTAINING C

C THE SPECTRAL ESTIMATES OF Y C

C MOTE THAT THE SPECTRAL ESTIMATES ARE C

C TAKEN AT FREQUENCES (I-I)/(L_DT) (HERTZ) C

C FOR I=I ,2, ... ,LD2PI C
C ZY -COMPLEX WORK VECTOR OF LENGTH L C

C C

C REMARKS : C

C I) THE SPECTRAL DENSITY FUNCTION IS DEFINED C

C ACCORDING TO EQ. 2.3 FROM CHAPTER TWO. C

C 2) PRIOR TO CALLING PSI), THE MEAN OF TIME C

C SERIES Y SHOULD BE REMOVED FROM EACH C

C ELEMENT OF THE TIME SERIES. C

C 3) THE OUTPUT IS RETURNED IN UNITS WHICH ARE C

C THE (SQUARE OF THE DATA)/FREQUENCE C
C C

C SEGMENT AVERAGING IS USED TO OBTAIN THE SMOOTH ESTIMATES C

C THE TOTAL SAMPLE SIZE bl = NSEGWL = NSEG_(2414LP2) C

C WHERE NSEG = NUMBER OF SEGMENTS C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

P,EM., ¥(N),PS¥(L/2+I)
COMPLEX ZZ(L)

LD2PI = L/2 + I

NSEG = INT(N/L)

PI = ACOS(-I.0)
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C

C

SCALE FACTOR 0.875 IS DUE TO THE COSINE TAPPERING
TO ADJUST THE POWER SPECTRAL ESTIMATE RESULTS

FACTOR= (DTeREAL (L))/(0.875)

C INITIALIZE THE FSY

5

10
J

oooo

J
ooeo

J
eeoe

J
oooo

o
oeoo

I
.ego

J
oooo

J
..eo

30

50

DO 5 JfI,LD2PI
PSY(J)=0.0

CONTINUE

DO 50 If I,NSEG
ND=(I-I )eL

DO 10 J=I,L
jPND=J+ND
ZY(J)=CMPLX(Y(jPND) ,0.0)

CONTINUE

TAPERING THE DATA SEQUENCE USING

THE COSINE TAPER DATA WINDOW

eoo.

oo0.

CALL TAPER(ZY,L,DT)

COMPUTE DFT

CALL FFT(ZY,LP2,L)

DO 30 J=I,LD2P1
PSZ(J)=PSY(J)+FACTOReABS(ZY(J))*ABS(ZY(J))

CONTINUE

CONTINUE

o
oooo

AVERAGE THE RESULTS FROM NSEG SEPARATE SEGMENTS

60

DO 60 I=I,LD2P1
PSY(I)=PSYCI)/REAL(NSEG)

CONTIk-u'E

RETURN

END
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5
6

K=ME/2

W=CMPLX(COS(PI/K),-SIN(PI/K))

DO 6 j=i,K

DO 5 L=j,N,ME
LPK=L+K

T=A(LPK)OU

A(LPK)=ACL)-T

ACL)=ACL)+T
U=U_,_

RETUI_
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SUBROUTINE FFT(A,NP,N)

CCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C

C C

C SUBROUTINE FFT FROM NEWLAND (PG 220), REFERENCE I C

C APPENDIX B, CALCULATES THE DFT OF A SEQUENCE A( I), C

C A(2), ...,A(N), WHERE M = 24HBNP, BY THE FFT METHOD. C
C C

C ARGUMENTS C
C A -INPUT COMPLEX VECTOR OF LENGTH N C
C CONTAINING THE DISCRETE TIME SERIES C
C -OUTPUT COMPLEX VECTOR OF LENGTH N C
C CONTAINING THE REQUIRED DFT C
C NP -M=2_NP C

C N -INPUT LENGTH OF THE TIME SERIES C

C C

C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

COMPLEX A(N),U,W,T

C

PI:ACOS(-I.0)

DIVIDE ALL ELEMENTS BY N

DO 1 J=I,N
A(J)=A(J)/N

I CONTINUE

ND2=N/2
NNI=N-1
J=l
DO 11 L=I,NM1

IF (L .GEo J) GO TO 2
T=A(J)
A(j):ACL)
A(L)=T

2 K=ND2
3 IF (K .GE. J) GO TO 4

J=J-K
K=K/2
GOTO3

q J=J+K

DO 6 M=I,NP

U-(1.0,0.0)
ME--2_M
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5UBHOUTINE TAYEHt_X,L,DT)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C C

C A SMOOTH FILTER SHAPE FOR FFT ESTIMATES TO C

C REDUCE LEAKAGE CAN BE OBTAINED BY TAPERING C

C THE ORIGINAL RANDOM TIME SERIES AT EACH END. C

C SUBROUTINE TAPER USES A COSINE TAPER DATA C

C WINDOW TO SMOOTH THE DATA AT 1/10 OF EACH C

C END OF THE RECORD (SEE FIG 11.8, PG Iq6, NEWLAND, C

C REFERENCE 1 IN APPENDIX B). C
C C
C ARGUMEMTS C
C ZY -INPUT COMPLEX VECTOR OF LENNGTH C

C L CONTAINING THE ORIGINAL DISCRETE C

C TIME SERIES C
C -OUTPUT COMPLEX VECTOR OF LENGTH C

C L COHTAING THE TAPERED DATA C
C L -INPUT LENGTH OF THE TIME SERIES C

C DT -SAMPLING INTERVAL C

C C
C C
CCCCCC_CCCCCCCCCCCCCCCCCCCCCCCCC

COMPLEXZZ(L)

20

PZ=ACOS(-I.0)
T=DT_REAL(L)

TDIO=T/IO.0

CI=9.04P_DIO
CONST=PI/TDIO

DO 20 I=I,L
TIME=DTIREAL(I-I)

IF (TIME .LE. TDIO) THEN

WT : 0.5 - 0.5 • COS(CONST • TIME)

ZY(I) = ZY(I)WWT
ELSEIF (TIME .GE. C1) THEN

WT : 0.5 + 0.5 * COS(CONST * (TIME-CI))

Z¥(I) = ZZ(I) * %iT
IF

CONTINUE
RETURN
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SUBROUTINE PLTSTND (VTS,LVPLT,DELTAT,ANSI)

INTEGER MARK, ICODE, IRATE, MODEL
PARAMETER (MARK=O)

REAL DELTAT, WIDTH, HEIGHT, VBIAS, TBIAS

REAL VTS(LVPLT)
CHARACTER _qO TIMELBL, VELCLBL, ANSI_2

DATA ICODE/ I /,IRATE/ 2qO0 /,MODEL/ qO1q /

DATA WIDTH/ 9.0 /,HEIGHT/ 7.0 /

DATA TORIG/ 0.0 /, VORIG/ 0.0 /, TBIAS/ 3- /, VBIAS/ I. /

TIMELBL = 'TIME (SEC) '
VELCLBL = 'RANDOM TURBULENCE VELOCITY '//ANSI

m .... FORM HIN & MAX ON THE TIME AXIS ....

TMIN:O.O
TMAX=LVPLT_DELTAT

TFACT=WIDTH/(TMAX-TMIN)

• .... FIND MIN & MAX OF RANDOM VELOCITY VECTOR, VTS ....

CALL CHECK (VTS,LVPLT,VMIN,VMAX)
VFACT=HEIGHT/(VMAX-VMIN)

i

CALL PLOTYPE (ICODE)

CALL TKTYPE (MODEL)

CALL BAUD (IRATE)

CALL SIZE (WIDe+6. , HEIGHT+3. )

CALL TEKPAUS

CAlL SCALE (TFACT,VFACT,TBIAS,VBIAS,TMIN,VMIN)

CALL AXISL (TMIN,TMAX,TORIG,VMIN,VMAX,VORIG,0.O, 1.0,

& 0 , 0 , -1 , 2 , 1. , 1. ,0.2, 0 )
..... PRINT HEADINGS ....

XPOS=TMAX+. I/TFACT

YPOS=-O. 2/VFACT

CALL SYMBOL (XPOS,YPOS,0.O,O.2,qO,TIMELBL)
XPOS=TMIN+ I./TFACT

YPOS= VMAX+O. q/VFACT

CALL SYMBOL (XPOS,YPOS,O.O,O.2,qO,VELCLBL)

t) .... PLOT RAglaN VELOCITY ....
CALL VECTORS
IP=O

DO 10 I=I,LVPLT
IJ=I-1
XT= IJ°DELTAT

YV=VTS (I)

CALL PLOT (XT,YV,IP,MARK)
IP=I

10 CONTINUE

CALL PLOTEND

RETURN

END
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SUBROUTINE PLTLOG (SPECT,FHEQ,LHALF,LABEL,ANSPLT)
i, O'.FL I'_ Fq _'Vq A _Vt'_ t m*'_V_qV

A_I_U_ MARK, N_ABEL, _uu.-, _na __,_u=_

PARAMETER (NLABEL: I,MAHE=26)

HEAL WIDTH, HEIGHT, FBIAS, SBIAS

HEAL SPECT(LHALF) ,FREQ(LHALF)

CHARACTER _0 LABEL (NLABEL), FREQLBL, PSDLBLe60, ANSPLT_2
DATA ICODE/I/ IRATE/2400/ MODEL/4014/ WIDTH/9./ HEIGHT/7./

DATA FBIAS/I./ SBIAS/I./

FHEQLBL = 'FREQ (HZ) '
PSDLBL : 'PSD OF '//ANSPLT//' '//LABEL(NLABEL)

.... FIND MIN AND MAX OF THE FREQUENCY VECTOR ....

CALL CHECK (FHEQ,LHALF,FMINC,FMAXC)
FMIN=ALOGI0(FMINC)

FMAX=ALOGI0 (FMAXC)

FFACT=WIDTH/(FMAX-FMIN)

.... FIND MIN & MAX OF THE SPECTRUM VECTOR ....

CALL CHECK (SPWCT,LHALF,SMINC,SMAXC)

CALL RANGEL (SMINC,SMAXC,SMIk'R,SMAXR)

SMIN=ALOGI0 (SMINR)

SMAX=ALOGIO (SMAXR)
SFACT=HEIGHT/(SMAX-SHIIt)

CALL PLOTYPE (ICODE)

CALL TKTYPE (MODEL)
CALL BAUD(IRA.)
CALL SIZE(WIDTH+2.5,HEIGHT+2.5)
CALL TEKPAUS

CALL SCALE (FFACT,SFACT,FBIAS,SBIAS,FMIN,SMIN)

CALL AXISL (FMINC,FMAXC,FMINC,SMINC,SMAXC,SMINC, I•,I•

& ,0,0,1,1,1.,1.,0.1,3)
eeee

.... PRINT HEADINGS ....

oooo

oooo

oooo

IPOS=FMIN+3.5/FFACT
YPOS=SMIN-O. 25/SFACT

SYMBOL (XPOS,I'POS,O. ,0.2,LIO,FREQLBL)
ZPOS=FMIN+ 1 •/FFACT
YPOS=SMAX+O. 2/SFACT

CALL SYMBOL (XPOS,_POS,0.,0.2,60,PSDLBL)

PLOT POWER SPECTRUM ....

CALL POINTS
IP=O

DO 100 I=I,LHALF
_:ALOGIOCFHEQ(I))
¥$:ALOGIO(SPECT(I))
CALL PLOT (XF,YS,IP,MARK)
IP=l



149

100 CONTINUE

CALL PLOTEND

RETURN

END



APPENDIX D. INPUT DATA FILE

150

The following sample input data file is for Mod-0A turbine.
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APPENDIX E. PROCEDURAL EXAMPLE OF THE PROGRAM SIMULX

INTERACTIVE RUN

15 2
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APPENDIX F. RESULTS OF THE SAMPLE RUN FOR Mod-0A TURBINE

The simulated results are as observed from the tip of a

Mod-0A wind turbine blade.
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APPENDIX II.A. PADE APPROXIMATION FOR MOVING AVERAGE

160

Consider the linear model given by

t
1

y(t) = _ f x(_) dT
t-T

Differentiating gives

3= 1
[x(t) - x(t - T)]

Laplace transforming gives

1
IX(s) - e-TSx(s)]sY(s)

The transfer function is thus

-Ts

T(s) - --'Y_s-----!
1 e

X(s) Ts

Forming the Pade approximation with first order numerator

and second order denominator

ao + als

T(s) - 2 (bo = I)

b o + blS + b2s

Expanding T(s) in a power series

1 1
T(s) = I - _ (Ts) + _ (Ts)

2 1 3
- -- (Ts) + ...

24

Dividing the rational approximation and equating like

powers of s gives



T
bI :'_"

T 2

b2 =I- _
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ao ffi1

al : 0

Thus,

T(s) -
1

T T 2 2

l+_s+li s

2
S

12

V
6 12

+_s+T-- 2



APPENDIX II.B

162

The discrete time transfer function for a sample data

system is given by

Gt(z) - Zz__!.[gCt)It_kT]

where g(t) is the continuous time unit step response for

the turbine given as

Tt(s)
g(t) - L-I [ _ ]

where Tt(s) is the turbine transfer between input

blade pitch angle and output torque.

For the wind turbine system

TQ O
g(t) = L-I [T +

blS + b 2

s (s 2 + 2_SnS + 2)

TO O b I (s + el )
L-I [-_ + ]

s((s + _d ± J_d ))]

aI a I e-ad t
= TQ 0 + b I {--_ + sin (_d t + Sl - _)}

mn _nmd

where



aI = J_ +(a I - ad)
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-i _d
= tan

-u d

_I = tan-i _d
(aI - ad)

b 2 bla I -adt
g(t) = TQ + -- + -- d

o 2 _n_d
_n

sin (_d t + a I - a)

-_dt

= A + B e sin (_d t + _)

where

b 2

A = TQ o +--_

_n

bla 1
B =

_n_d

-_d t

g(t) = A + B e (sin_dt cos_ + cos_dt sin_)

z-I
Gt(z) - z z [g(t)It=k T]

-adT

z-i Z ze sin_dT

= _2adT)--£- {z-_1 A + ( Bcos_

z 2- 2ze -T cos_dT + e



=A + C

÷(

÷(

-_d T
z (z - e cosmdT)

-2adT)

z 2 - 2ze -T cosmdT + e

-adT
(z-l) e sinmdT

_2_dt) Bcos$2 -T
- 2ze cosmdT + e

-adT
(z-l) (z - e cosmdT)

_2_dT, ) Bsin_

2 _ 2ze-T cosmdT + e

164

Ssin_}

-2adT
= {A(z 2 - 2ze -T cosmdT + e )

-adT

+ B(z-l) e cos$sinmdT

-adT
+ B(z-l)sin_ (z-e cosmdT) }

-2adT }_{z2_2ze-TcosmdT+e 1

-adT
= {(A+Bsin#)z2+(-2Ae-TcosmdT+Bcos#e sinmdT

-_d T -2adT

-Bsinse cosmdT-Bsin%)z+(Ae

-adT

-Bcos@e sinmdT

-adT -2adT }+Bsin#e cosmdT)}{z2-2ze-TcosmdT+e -i

= {(A+Bsinu)z2+[-2Ae-Tcosmd T
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-adT -Be sin(_dT-#)]}+Be sin(_dT-#)]z+[ Ae-2adT -adT

G(z) =

-2adT

{z2_2ze_Tcos_dT+ e }-i

C2 z2 + ClZ + C O

2
z + DlZ + DO

where

C = A + B sin#
2

-adT sin(_d T - #)

C1 = _ 2Ae-Tcos_dT - B sin# + Be

-2adT -sd T

Co = Ae - Be sin(_dT - #)

D I = - 2ze -T cos_dT

-2adT

DO = e


